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1.1 Introduction 

The aim of this document is three-fold. First, it provides a state-of-the-art overview of the core elements in 
short-term forecasting systems. In doing so, we discuss short-term forecasting systems and their 
constituent elements, decision support systems and traffic control algorithms, as well as some open issues. 

Second, it reviews multiple applications of short-term prediction systems in Europe. It is worth noticing that 
since many of these applications are still undergoing some testing, there was no much information 
available to the public. Nevertheless, the cases presented here provide a general overview of the trends in 
Europe regarding the application of short-term algorithms by Traffic Management Centres and other 
government agencies. Table 1 shows a summary of all the cases reviewed as part of the project.  

Third, it provides some conclusions on the topic of short term prediction algorithms and its applications in 
Europe, as wells as some recommendations both for practice and future research. 

Table 1 Summary of Reviewed Applications 

City / Country Type of 
network Time line Software Objective 

Berlin / Germany Urban network Currently 
operational VISUM Online To provide information 

Dusseldorf / Germany Urban network Currently 
operational 

PTV Traffic 
Platform 

To provide information and 
control strategies 

Helsinki / Finland Motorway 2005 SOM neural 
network To provide information 

London / United Kingdom Urban network Currently in 
testing phase OPTIMA To provide information and 

control strategies 

Naples / Italy Motorway Currently 
operational RENAISSANCE To provide information, and to 

detect incidents 

North Rhine-Westphalia / 
Germany Motorway Currently 

operational OLSIM To provide information 

Rome / Italy Motorway 2008 

Pattern Matching 
and Artificial 
Neural Networks 
algorithms 

To provide information 

The remainder of this document is organized as follows: 

� Section 2 provides a state-of-the-art review of short-term forecasting models, which is a core element 
of many decision support systems and control approaches, discussed in section 3 and 4 respectively.  

� In section 5, we discuss some ‘open issues’ which are deemed important when applying short-term 
prediction to real-life cases.  

� Section 6 reviews the applications mentioned in Table 1. 

� Section 7 summarizes the findings of this Work Package and our main recommendations. 

1 State-of-the-Art Best Practice 
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2.1 Introduction 

In the international literature a vast amount of studies has been focusing on short term traffic prediction, 
where short-term usually reflects a prediction horizon of up to one or two hours. In this chapter we provide 
an overview of different approaches to short-term traffic prediction. This elaboration has been drafted 
largely from van Hinsbergen et al. (2007), complemented with parts of Tampère et al. (2009). For more 
details or scientific references, the reader is referred to these two articles. 

Prediction models can be subdivided into three main categories: naïve methods, parametric models and 
non-parametric models, and further subdivided after that (see Figure 1). 

 

Prediction Models 

Naïve 

Instantaneous 

Hist. average 

Clustering 

Parametric 

Traffic Models 

Time Series 

Rarely used 

Non-Parametric 

L.W. Regression 

Rarely used 

Neural Network 

Bayes Network 

k-NN 

Fuzzy Logic 

 

Figure 1 Taxonomy of prediction models (van Hinsber gen…) 
 

Following the above categorization, the different types of prediction models are discussed in the following 
subsections. 

2.2 Naive methods 

The term ‘naïve’ is rather subjective, but can be interpreted as ‘without any model assumption’. Naïve 
methods are widely applied in practice because of their low computational effort and easy implementation. 
The accuracy however is usually very low. Generally any parametric or non-parametric method was found 
to have a higher accuracy than these methods. 

 

2 Short-Term Traffic Prediction Models 
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2.2.1 Instantaneous 

When Instantaneous Travel Times (ITTs) are used as ‘predictor’, it is assumed that traffic will remain 
constant indefinitely (see e.g. the comparative article of Huisken & van Berkum, 2003). Although this 
method is very fast, as no calculation at all is required, its predictive performance is very bad because 
traffic is far from constant. 

2.2.2 Historical averages 

Averaging past traffic data will produce the historical average of a certain traffic variable (e.g. Rilett & Park, 
2001 and Wu et al., 2004). Compared to more advanced techniques the historical average never comes 
out best, although sometimes it can outperform some prediction techniques on longer horizons. 
Sometimes, the historical averages are divided into time bins to improve performance (Hobeika & Kim, 
1994). 

Combinations of instantaneous and historical average all combine the last known measurement and the 
historical average in some way. These methods do not have high prediction accuracy. 

2.2.3 Clustering 

Clustering methods average traffic variables within a specific group of days based on similar traffic 
patterns. Applied algorithms are for example the Small Large Ratio and Ward’s Clustering (e.g. Chung, 
2003). Sometimes, clustering is used for pre-processing input data (Chrobok et al., 2004). These clustering 
techniques have been shown to outperform historical average and in one occasion a linear regression, but 
are crude and therefore not often used. 

2.3 Parametric models 

The term ‘parametric’ indicates that only the parameters of the model need to be found using data; the 
structure of the model is predetermined. Knowledge on the traffic processes can be implemented in these 
structures, especially in traffic simulation models, which can aid in understanding traffic processes. Also, 
unforeseen cases such as incidents can be modeled. This is very useful for DTM purposes. Another 
advantage of these methods is that usually less data is needed compared to non-parametric models. Some 
parametric models have shown good performance, in accuracy as well as computational effort. 

2.3.1 Traffic simulation models 

There are two main classes of online traffic state estimation and prediction models for traffic networks: 
online full dynamic traffic assignment (DTA) models, and online traffic flow models. The former explicitly 
model demand, route choice and flow propagation through the network, whereas the latter only simulate 
flow propagation, while treating time-dependent demand and route choice implicitly as dynamic parameters 
or boundary conditions. 

The principal achievements in online full DTA models are due to Mahmassani et al. (2001) and Ben-Akiva 
et al. (2001). They developed respectively the Dynasmart-X and DynaMIT models after the US Federal 
Highway Administration (FHWA) recognized the need to accelerate the development and deployment of 
DTA models and initiated the traffic estimation and prediction (TrEP) program in 1994. 

An inherent problem with online full DTA models is the fact that for online calibration of the three sub 
models (demand, route choice, and supply), only one set of real-time measurements is available. The 
system is therefore highly underdetermined, potentially leading to calibration problems (e.g. Brandriss, 
2001). A typical remedy is to give relatively high weights to prior estimates (offline calibrated) of the 
variables. This has the advantage of the model predictions converging smoothly to historic average traffic 
conditions as prediction horizon becomes longer. On the other hand, the flexibility of the model to adapt to 
the actual traffic situation is limited. An alternative remedy is to use real-time information to adapt only a 
subset of the variables, for instance those of the demand model, and to consider the actual settings of the 
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other sub models as correct. This is largely the approach followed in the heuristic commercial model 
Visum-online (PTV, 2001). Also the more recent online DTA model of Flötteröd et al. (2008) adopts this 
approach, albeit different from the other online DTA models, in that it uses aggregate detector 
measurements for calibrating a disaggregate rather than an aggregate demand model. 

Online traffic flow models are the alternative to the DTA-based approach. Here, real-time data is used for 
calibrating only the state variables of the flow propagation model, so that demand and route choice do not 
require separate sub models but can be implicitly treated as (dynamically varying) boundary conditions and 
parameters (split fractions at nodes). As such, the traffic state can be more flexibly adapted to the current 
traffic conditions. Various methods for online calibration of the online model were proposed, like heuristic 
approaches applied to microscopic (Kaumann et al., 2001) and macroscopic flow models (Muñoz et al., 
2003) and fuzzy logic (Kim, 2002). However, most contributions in literature apply some form of Bayesian 
recursive filtering1 with a macroscopic representation of traffic dynamics. 

Both first order traffic flow models, usually in the numerically discretized form of the Cell Transmission 
Model (CTM, Daganzo, 1994; Lebacque, 1996) – see for instance Kurzhanskiy & Varaiya (2012), who 
consider demand and supply uncertainty in the predictions, for an interesting recent application -, and 
higher order traffic flow models are used. The latter models, numerical versions of the model of Payne 
(1974) or dedicated stochastic extensions of the CTM (Boel & Mihaylova, 2006), are theoretically better in 
reproducing instability and stop & go waves. However, there is no decisive argument available in literature 
on whether this actually results in better estimation and prediction performance. 

2.3.2 Time series 

Time series prediction involves modeling a variable as a function of its past observation and an error term. 
Instead of using traffic theory, statistical functions are used. Compared to other methods some of these 
methods have shown a high accuracy and a low computational effort, making some of them useful for short 
term predictions. 

2.3.2.1 Linear regression 

In linear regression the prediction function is assumed to be a linear combination of its covariates, where 
parameters indicate how much one covariate contributes to the outcome (e.g. Lan & Miaou, 1999 and 
Rice & van Zwet, 2004). Although the model is simple, in some cases it is shown to produce quite good 
results, as well as very fast predictions due to its simple form. 

2.3.2.2 ARIMA 

An ARIMA model, also called a Box-Jenkins model, is a common statistical technique that can be used for 
prediction (see e.g. Kirby et al., 1997 and Smith et al., 2002). Results of applying ARIMA are mixed; some 
studies report good results, some report the contrary. Many variations on ARIMA have been proposed in 
literature, such as SARIMA (see e.g. Guo, 2005), subset ARIMA (Lee & Fambro, 1999), Kohonen ARIMA 
(Voort et al., 1996), ARIMAX (Williams et al., 1999), VARMA (Min & Wynter, 2011) and STARMA 
(Kamarianakis & Prastacos, 2003) and Exponential Smoothing (Chrobok et al., 2004) in order to improve 
results. Some of these variations are indeed shown to improve prediction accuracy. 

_________________________ 
 
1 Several authors have elaborated the Bayesian recursive filter in a variety of manners, ranging from the 
simplest assumptions of Gaussian noise and linearized models, yielding Extended Kalman Filters (EKF), 
over Mixture Kalman Filters (MKF) that explicitly deal with mode switching in the CTM, to Unscented 
Kalman Filters (UKF) and Particle Filters (PF) that both allow non-Gaussian distributions of noise and 
system states and do not require approximation of the first order derivatives of system and measurement 
models. For practical applications, the simplest and computationally least stringent EKF is reported to be 
sufficiently accurate (van Hinsbergen et al. 2008; Wang et al., 2008). 
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2.3.2.3 Kalman filtering 

A Kalman filter estimates the future state from only the estimated state in the previous time step and the 
current measurement (see e.g. Okutani & Stephanedes, 1984). Results are varying: the Kalman filters 
outperform some methods but sometimes the same models outperform Kalman filters. 

2.3.2.4 ATHENA 

In this model, developed by the French traffic and safety research institute INRETS, traffic is modelled as a 
linear combination of historical and current states. For each type of traffic a non-linear transformation is 
applied. This model outperformed several other models (Kirbey et al., 2004). 

2.3.2.5 Gaussian Maximum Likelihood 

A Gaussian Maximum Likelihood is based on the following two principles: (1) the prediction deviates as 
little as possible from the historical average, and (2) the predicted increment deviates as little as possible 
from the historical increment. Predictive performance is better than several other methods according to Lin 
(2001). 

2.4 Non-parametric models 

The term non-parametric does not imply that these models completely lack parameters, but rather that the 
number and nature of the parameters are flexible and not fixed in advance. Model structure as well as 
model parameters need to be determined from data. Therefore, usually more data is required than for 
parametric models. The advantage of these models is that the difficult, dynamic and non-linear processes 
found in traffic can be modelled without knowledge on the underlying processes being required. 
Unforeseen cases such as incidents, however, pose a problem as the model structure is derived from data. 
What is striking is that only one of these methods has been applied network-wide; all other studies focus on 
predictions on one single location or one route due to lack of data on all roads. For DTM purposes, this is a 
major drawback. 

2.4.1 k-Nearest Neighbor 

With the k-Nearest Neighbor method, a historical database is searched every time for the k events which 
are nearest to the current traffic situation. The outcomes of the nearest events are averaged or weighed to 
their distance to the current situation (see e.g. Rice & van Zwet, 2004 and Kim et al., 2005). All studies 
show that it is a fast method that can outperform naïve prediction methods, but none finds it more accurate 
than more advanced methods. 

2.4.2 Locally Weighted Regression 

Locally Weighted Regression uses local regression models. The prediction residual of each data point is 
then weighted proportionally to its proximity to the current measurement. Very good results are reported 
(Nikovski et al., 2005 and Zhong et al., 2005) in prediction accuracy as well as computation time. 

2.4.3 Fuzzy Logic 

With fuzzy logic a rule base (a set of IF-THEN rules) is created, manually or automatically. A current 
situation corresponds to one or more rules. Based on the ‘then’ and sometimes the degree of 
correspondence, a prediction is made. While some studies find promising results, Huisken (2003) finds that 
Neural Network methods produce better predictions. 

2.4.4 Bayesian networks 

In Bayesian networks, also known as causal models, the data from adjacent links are considered 
informative to the current link under investigation (Zhang et al., 2004). A Bayesian network is simply a 
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directed graphical model for representing conditional independencies between a set of random variables. 
Comparisons with other methods are not made. 

2.4.5 Neural Networks 

Neural networks are the most widely applied models to the traffic prediction problem, because they are 
capable of modeling non-linear and dynamic processes well. Many extensions on the basic concept have 
been implemented to improve prediction accuracy and/or reduce computational effort. These extensions 
can be subdivided by the type of variation: (1) a different training procedure, (2) different internal structures 
or mathematics, (3) pre-processing input data and (4) include spatial and/or temporal patterns explicitly into 
the models. Before these extensions are dealt with, first the “standard” neural network is described. 

2.4.5.1 The “standard” Neural Network  

The Back Propagation Neural Network (BPNN) is more or less the “standard” neural network approach, 
and when a variation is applied, usually the models are compared to the BPNN. The BPNN consists of an 
input layer, one or more hidden layers and an output layer. Training with back propagation means that 
there are two steps: (1) input is fed to the hidden layer; one or more outputs are produced as the response 
of the network; (2) this response is then compared with the desired output, and the difference (the error) is 
propagated backwards through the network. During this phase, the weights of the connectors are adjusted. 
This process is repeated until weights stop being adjusted and the errors remain constant. Many studies 
use BPNNs to predict traffic data, e.g. Huisken & van Berkum (2003) and Ishak & Alecsandru (2004). 
Results are good, although almost all extensions, which will be treated next, improve results even more. 

2.4.5.2 Different training procedures  

The Conjugate Gradient Algorithm (CGA) uses another way of adjusting weights when back propagating 
errors through the neural network. The most widely known CGA is the Fletcher-Reeves update (see e.g. 
Innamaa, 2005). Results are comparable to the standard BPNN. Evolutionary Learning is inspired by the 
theory of evolution. Neural network “individuals” can reproduce and/or compete with other individuals. 
Strong individuals with good predictions survive longer and/or reproduce more. The “fittest” individual will 
be chosen as the predictor (see e.g. Zhong et al., 2005). These Evolutionary Neural Networks (ENNs) 
show very positive results. Compared to the standard BPNN, training is much faster and prediction 
accuracy is higher.  

2.4.5.3 Different internals 

A Modular Neural Network (MNN) is based on a ‘divide-and-conquer’ strategy Ishak & Alecsandru (2004). 
The input is processed in several sub networks, each specialized in a certain task. MNNs are faster to train 
and can improve results (see e.g. Innamaa, 2005). Radial Basis Frequency Networks (RBFNN) use the 
Euclidean distance between the hidden neuron centre and the input vector (e.g. Huisken, 2003). Results 
show a slightly positive preference of RBFNN over BPNN. Inside the hidden layer of a Neuro-Fuzzy 
Network (NFNN), Fuzzy Rules are defined automatically (e.g. Xiao et al., 2004). Results are comparable to 
or better than those of the BPNN. In a Counter Propagation Neural Network (CPNN), at each iteration the 
inputs are assigned to one node using a distance measure (Dharia & Adeli, 2003). Training time is 
dramatically decreased and performance is slightly improved. 

2.4.5.4 Pre-processing input data 

Wavelet transformation is generally used for de-noising data (Xiao et al., 2004). A Wavelet Neural Network 
(WNN) uses wavelet functions instead of the standard sigmoid function used in BPNN (Xie & Zhang, 2006). 
Improvements in prediction accuracy as well as computational effort are found (Li, 2002). The Spectral 
basis Network (SNN) employs a Fourier expansion of the input vector to obtain linearly separable input 
features (Rilett & Park, 2001). This new input vector is fed to a standard BPNN model. Improvements in 
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prediction accuracy are found, especially on longer prediction horizons. The Generalized Neural Network 
(GNN) also uses a Fourier expansion of the input vector. The hidden neurons however are replaced with 
intelligent neurons which have an increased storage capability (Tan et al., 2004). In convergence and in 
accuracy, the GNN is found to be better than the BPNN. A Kohonen Self Organizing Feature Map Network 
can be used to cluster input data before feeding it to a standard BPNN (Park & Rilett, 1998).  

The Kohonen SOFM is itself a neural network, containing only input nodes and output nodes and no hidden 
layer. The Kohonen SOFM BPNN is found to outperform a standard BPNN, but is in its turn outperformed 
by a Fuzzy c-means Clustering Network (FCNN) (Park & Rilett, 1998). The FCNN clusters the input data 
before feeding it to a standard BPNN. The FCNN outperformed a number of other neural network 
applications and other techniques. In a Principal Component Analysis Neural Network (PCANN), the input 
vector data is “compressed”, reducing the number of inputs and therefore improving the BPNN 
performance (Ishak & Alecsandru, 2004). CoActive Neuro-Fuzzy Inference Systems (CANFIS) combine 
features of the RBFNN and the FCNN and outperforms several other neural networks (Ishak & Alecsandru, 
2004). 

2.4.5.5 Include temporal/spatial patterns 

The Jordan/Elman network or Simple Recurrent Network (SRNN) contains memory units that are used to 
store the hidden-layer output signals at the previous time step, providing a mechanism to recognize 
recurring patterns (e.g. Ishak et al., 2003). Results are similar to other improved neural network topologies. 
The Partially Recurrent Network (PRNN) is a simplified version of the Jordan/Elman network (see e.g. 
Ishak et al., 2003) and shows equal performance to other neural networks. The State Space Neural 
Network is a special version of the Partially Recurrent Elman network (e.g. van Lint et al., 2002). The 
neurons in the hidden layer all represent a certain link of an entire route. The weights of a hidden neuron 
can be interpreted as the link travel times.  

The SSNN outperforms naïve methods drastically (van Lint & Schreuder, 2006) but is not compared to 
other neural network types. In contrast to the BPNN, in the Finite Impulse Response Network (FIRNN) the 
static weights are replaced by linear filters which have tapped delay lines in it, so to capture the internal 
dynamics of the traffic processes (Yun et al., 1998). The FIRNN outperforms BPNN, but is outperformed by 
a Time Delay Recurrent Network (TDRNN) where the previous output values are fed back into the input 
values (see Yun et al., 1998). The Time Delay Feedforward Network (TDFNN) has memory only at the 
input layer. It is composed of feed forward arrangement of memory and nonlinear processing elements. 
Results are good (see Alecsandru, 2003 and Ishak et al., 2003), but the Locally Weighted Regression 
model performed better (Zhong et al., 2005). 

2.5 Conclusions 

An overwhelming amount of different methods have been developed. It can be concluded that not one of 
the methods can be considered the best method in any situation, let alone under all possible situations. 
Under some conditions the linear regression, the Locally Weighted Regression model, and Evolutionary 
Neural Networks have shown good performance in comparison to other methods in prediction accuracy 
and in computational effort. 

What is striking is the small number of methods that have been applied network wide and in both urban and 
freeway environments. After all, for most practical applications, such as trip planning for transport 
companies, route advice in consumer products and large scale Dynamic Traffic Management, network wide 
predictions in all environments are a necessity. The vast majority of studies however have focused on 
predicting traffic on a single location or fixed routes on freeways. In order for the methods to be used in 
practice they should be able to predict traffic on a much larger scale. An important advantage of traffic 
simulation models is therefore that they can be used for network-wide traffic predictions. Moreover, 
because traffic flow models capture the fundamental properties of traffic flow, they improve consistency 
between measurements, guaranteeing physical principles like conservation of vehicles on links and over 
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nodes. This also renders them capable of modeling unforeseen situations such as incidents, which pose a 
problem for non-parametric models. 

Traffic simulation models seem to be an isolated research topic. In no study a comparison is made 
between a traffic simulation model and any other method. This can be due to the difference in scale as 
mentioned before. Nevertheless it would be interesting to see how time series or non-parametric 
approaches would perform in comparison to traffic simulation models, on certain links or on a network wide 
scale. 
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3.1 Introduction 

The purpose of a Decision Support System (DSS) is to aid traffic operators in selecting appropriate traffic 
control measures (see SECTION for an overview of the various possibilities) given the current and shortly 
expected traffic conditions. To obtain an estimation of the future traffic conditions, prediction models are 
used (see the overview in SECTION). To fulfill this purpose, a DSS generally performs the following tasks 
(Hoogendoorn et al. (2003) and Ossowski et al. (2002)): 

� Identification of problems: 

- Monitoring: This step involves the automatic collection and processing of all data. This includes 
traffic measurements (speeds, flows, densities) but also additional information may be obtained, for 
instance from a dialogue with the traffic operator. 

- Diagnosis: The problem, i.e. the situation that (possibly) requires a control action, needs to be 
identified and described (e.g. location, type, cause) given the available data.  

� Proposal of control alternatives: Various decision alternatives are to be selected to try to remedy the 
observed problem. 

� Prediction: A forecast is made of the expected traffic conditions given the current conditions, the 
predicted demands and the proposed control scenarios. For this, a traffic prediction model is used. 

� Advise: The DSS suggests a control scenario that is expected to produce the best results to the 
operator. Often, a ranking of several control options is presented, based on the score on some or 
several performance indicator(s). 

While some articles presenting DSS have been found, the scientific literature on this subject is somewhat 
limited. Arguably, expertise regarding DSS is more present in commercial companies than in the academic 
world. In the following, a brief discussion of the investigated scientific articles is provided. 

3.2 Overview of Scientific State-of-the-art 

Knowledge-based decision support systems use heuristic rules (of thumb) defined from expert knowledge 
to identify viable control actions responding to the observed traffic conditions. One of the earlier knowledge-
based decision support systems for traffic control is the Freeway Real-Time Expert System Demonstration 
(FRED), see Ritchie (1990) and Zhang & Ritchie (1994). The applicability of these early developments was 
rather limited. 

Logi & Ritchie (2001) proposed the ‘Traffic Congestion Manager’ (TCM). TCM uses real-time traffic data 
and knowledge-based rules to identify and characterize problems (mainly based on location and problem 
type). Then, possible control actions are selected from a predefined database, based on a strategy 
appropriate to the identified problem. The expected impact on traffic flow is estimated based on current and 
expected information on demand and supply. This evaluation is performed with simple models composed 
from HCM guidelines and experts’ rules of thumb. Also, the compatibility between problems, goals and 
control solutions is analysed.  Viable control responses are then proposed to the operator, along with an 
explanation of the reasons process that led to their selection and an estimation of their expected impact.  

Another knowledge-based decision support system is the TRYS system presented by Cuena et al. (1995) – 
see also Molina et al. (1998) and Hernandez et al. (2002). TRYS divides a network in several (overlapping) 
sections to which agents are assigned. An agent detects problems in their section and proposes control 
actions to a higher level coordinator. This coordinator combines the local proposals into global control 

3 Decision Support Systems 
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actions. The TRYS system applies fuzzy logic in its decision process, which has the advantage that it can 
deal with situations that are not entirely covered by the knowledge base (De Schutter et al. (2003)). 

Another approach is case-based decision support. Herein, solutions to the current problem are selected 
based on the solutions of similar past problems. These are the cases, describing the impact of control 
actions under specific conditions. After implementing a control solution to the current problem, the resulting 
situation can be added to the case base. This means that case-based DSS is a continuous step-wise 
learning procedure (Aamodt & Plaza, 1994). Case-based DSS can be formulated as four steps: 

1. Retrieve cases in the case base that are relevant to the current problem 

2. Map the solutions from the selected cases to the current problem (e.g. with fuzzy logic)  

3. Test the new solution (in real-life or in simulation) and if necessary, revise it 

4. Keep the resulting experience as a new case for future decision support 

A case-based DSS is presented in Hoogendoorn et al. (2003) and De Schutter et al. (2003). This is a multi-
agent DSS that divides the network into sub networks. Each sub network has its own case base and an 
evaluation agent. The case bases contain specific situations that have occurred in the sub network, and 
describe the relation between the input (the circumstances and the applied control measures) and output 
(the performance) of the sub network for these situations. Traffic control measures are subdivided in global 
measures (e.g. route guidance) that have an effect on the entire network and local measures (e.g. ramp 
metering or variable speed limits) that mainly have an impact within the sub network. If a problem has been 
identified and diagnosed, it is determined which cases (for each relevant sub network) are the most similar 
to the current situation. This similarity is described by similarity function based on fuzzy membership 
functions.  

The predicted performance of a control scenario to the current problem is then estimated as the weighted 
average – using the similarity functions as weights – of the performances of this control scenario in the 
considered cases. The total network performance is obtained as a weighted average of the sub network 
performance – the weights being the relative importance of a particular sub network to the total 
performance. Based on (weighted sum of) the selected performance criteria (e.g. total time spent, 
maximum throughput) a ranking of the best control measures is suggested to the operator. Finally, De 
Schutter et al. (2003) state that the purpose of their methodology is to limit the possible combinations of 
control measures to only a few, which deserve further evaluation (for instance by a real-time traffic 
simulation model).  

The DSS presented in Krishnan et al. (2010) works according to the same principles as case-based DSS, 
in the sense that past performances in similar situations are used to suggest control measures for a current 
problem. Instead of using a case base, a pattern-matching component is applied to identify similar past 
traffic conditions. Krishnan et al. (2010) combine a state estimation model and a rule set to identify 
problems. A so called rule engine then determines the course of action: either a pre-defined control 
measure is suggested based on some rule, or the pattern-matcher is addressed. This pattern-matcher is 
essentially a k-Nearest Neighbour (k-NN) tool that - using the Advanced Uncertain Reasoning Architecture 
(AURA) technology (AURA, 2010) to decrease computation time - rapidly searches historic traffic datasets, 
finding (sets of) control measures applied in time periods with similar traffic conditions.  The best solution(s) 
to the current problem is then selected as the one among these past control measures maximizing the 
performance. The performance is calculated during a pre-defined number of time periods after each control 
measure was applied.  

Finally, Almejalli et al. (2007) propose a DSS that uses a fuzzy neural network approach to suggest a 
ranking of control measures to the operator. A fuzzy neural network approach adopts the learning 
procedure from the neural networks to determine the fuzzy logic parameters (e.g. fuzzy memberships). A 
genetic algorithm is used to generate the fuzzy rules needed to build the fuzzy neural network. The current 
traffic conditions and an offline generated set of possible control actions is input to the pre-trained fuzzy 
neural network tool. This tool then predicts the performance of each control measure. A weighted 
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aggregate performance is obtained from several criteria such as queue lengths, total travel times, fuel 
consumption and so on. 

3.3 Conclusions 

Several DSS found in the literature have been described. Articles that extensively review and categorise 
earlier work were not found. Also comparative studies are lacking, which makes it difficult to assess the 
validity of the various existing approaches. 

Most approaches are either knowledge-based (operating on expert rules) or case-based (building on past 
example cases). Case-based approaches have the advantage of providing decision support based on 
actual (past) observations instead of predefined knowledge-based rules of thumb. On the other hand, the 
validity of the case-based DSS seems to strongly depend on the quality of the case base. Almejalli et al. 
(2007) use fuzzy rules composed via genetic algorithms in a neural network tool.  

Fuzzy logic is used by the majority of DSS. Fuzzy systems have the advantage of being able to generate 
decisions for situations that are not explicitly covered by the reference base. 

Many DSS adhere a multi-agent architecture, often dividing the network in smaller sub-networks. This 
renders the methodology scalable to large networks. However, caution is needed to ensure consistency 
between the predictions for different sub-networks, i.e. the boundary conditions must match (De Schutter et 
al., 2003). Ossowski et al. (2005) provide guidelines for the construction of agent-based DSS. Dunkel et al. 
(2011) do the same for a event-driven framework for DSS, but they fail to clearly indicate the difference and 
benefits of their suggested approach compared to existing DSS. 

Finally, all examined studies select (or rank) control measures from a pre-defined set of possible control 
interventions. None seem to generate a detailed control scenario from scratch. 
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4.1 Introduction 

This chapter provides a literature survey of co-ordinated traffic control strategies, both for freeways and 
urban roads. It is an edited version of an existing report with permission of the authors: 

S. Lin and B. De Schutter, A survey on coordinated traffic control, Tech. Report 09-054, Delft Center for 
Systems and Control, Delft University of Technology, Delft, The Netherlands, December 2009, Report for 
the Centre for Transport and Navigation (DVS) of the Dutch Ministry of Transport, Public Works and Water 
Management. 

The coordinated traffic control strategies are classified into different categories according to the control 
methodologies adopted, i.e. optimal control approaches, Model Predictive Control (MPC) approaches, rule-
based approaches, case-based approaches, and approaches based on the network macroscopic 
fundamental diagram. 

4.2 Optimal Control 

The main idea of optimal control is to find the optimal control measures of the whole freeway network in the 
future by optimizing the cost function based on a network model for a certain future time horizon. The 
optimal control approach can coordinate the freeway network in a centralized structure. It not only can 
coordinate the control measures on different space locations and different time points in the future, but it 
can also coordinate different types of control measures (e.g. ramp metering, speed limits, and route 
guidance). Optimal control approaches for freeway networks and urban networks are both discussed 
below. 

4.2.1 Freeway Networks  

AMOC (AdvancedMotorwayOptimal Control) (Kotsialos and Papageorgiou, 2004b) and OASIS (Optimal 
Advanced System for Integrated Strategies) are two control software tools based on optimal control theory. 
They both adopt the macroscopic freeway traffic model METANET (Messmer and Papageorgiou, 1990) as 
optimization model. However, because the freeway network model is nonlinear, one of the big challenges 
of applying optimal control is to find an efficient algorithm to solve the large-scale optimization problem. A 
numerical solution algorithm that is based on a feasible-direction nonlinear optimization method, is 
proposed to successfully solve this problem (Kotsialos and Papageorgiou, 2004a,c; Kotsialis et al, 2002). 
The AMOC approach has been applied to the Amsterdam ring-road, and proved to have good coordination 
control effectiveness. 

4.2.2 Urban Networks  

In recent years, a number of urban traffic models have been proposed. For different urban traffic models, 
different optimal control approaches have subsequently been derived. The store-and-forward model is a 
linear state-space model for road networks of arbitrary size, topology, and characteristics.  The linear state-
space feature of the store-and-forward model opens the way to the application of a number of highly 
efficient optimization and control methods (such as linear programming, quadratic programming, and 
multivariable regulators) with polynomial complexity. Based on the store-and-forward model, an open-loop 
quadratic-programming control (QPC) (Aboudolas et al., 2009) approach was developed, which can be 
efficiently solved by using broadly available codes of commercial software. 

However, to keep the linear characteristic, the store-and-forward model is only applicable under a saturated 
traffic scenario. Therefore, an open-loop nonlinear optimal control (NOC) approach is developed based on 
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a nonlinear urban traffic model, which is more elaborate to describe more complex traffic dynamics. A 
numerical feasible-direction optimization algorithm is applied to solve the nonlinear optimization iteratively, 
which requires more computational complexity than QPC. 

To avoid the inherent drawbacks of an open-loop structure, a linear-quadratic (LQ) optimal control 
approach, Traffic-responsive Urban Control (TUC) (Aboudolas et al., 2009; Dinopoulou et al., 2006; 
Kosmatopoulos et al., 2006), was developed based on the store-and-forward model. Instead of optimizing 
the control inputs (i.e. green times), TUC optimizes the linear multivariable feedback regulator off-line, as 

 )x(-  = (k) kN Lgg  (1) 

where the feedback gain matrix L results as a straightforward solution of the corresponding algebraic 
Riccati equation, and gN is a nominal vector for g. The feedback regulator is actually a feedback control 
law, which is assumed to be a linear function of the traffic states x(k) for the linear traffic control problem 
presented in TUC. The parameters of the feedback control law, i.e. the feedback gain matrix L, can be 
obtained through off-line optimization. Then, the optimized feedback regulator can be actuated on-line to 
derive the new green times, fed with the real-time measured traffic states x(k), and no on-line optimization 
is needed. 

Dynamic Intersection Signal Control Optimization (DISCO) (Lo et al., 2001) is a dynamic urban traffic 
optimization control approach based on the cell-transmission model. The timing plans of the urban traffic 
network are derived by solving the optimization problem via a genetic algorithm. DISCO is proved to be 
superior to TRANSYT, especially under congested situations. 

In spite of all the advantages, the optimal control approach is still open-loop. It solves the optimization 
problem based on the approximation of the future network disturbances, which can be inaccurate, or even 
be the opposite to reality when unpredictable events occur. Moreover, mismatches between the model and 
the real world, and inaccuracies in estimating initial traffic states can always happen. Under these 
circumstances, the control results derived from optimal control methods are not the best coordination 
control actions anymore. 

4.3 Model Predictive Control (MPC) 

Model Predictive Control (MPC) (Camacho and Bordons, 1992; Maciejowski, 2002) is a methodology that 
implements and repeats optimal control in a rolling horizon way. This means that, in each control step, only 
the first control sample of the optimal control sequence is implemented, subsequently the horizon is shifted 
one sample and the optimization is restarted again with new information of the measurements. The 
optimization is calculated based on the prediction model of the process and of disturbances.  

Taking optimal control as the core algorithm, MPC preserves all the advantages of optimal control. It can 
predict and find the coordinated optimized solution for the entire network in the future. It can also 
coordinate different types and numbers of control measures. Due to the rolling horizon methodology, the 
MPC controller becomes closed-loop by adjusting the controller with a real-time feedback. The MPC 
controller thus obtains the ability to deal with the uncertainty of the real world, caused by unpredictable 
disturbances, (slow) variation over time of the parameters, and mismatch errors of the prediction model. In 
principle, a centralized MPC method can maximize the throughput of the whole network or any other 
objective function, and provide network-wide coordination of the traffic control measures. However, the 
real-time computation complexity is a big challenge for implementing MPC controllers to traffic networks in 
practice. In general, the computational complexity will increase exponentially when the scale of the network 
grows (if the prediction model is nonlinear). To overcome this problem, different structures (e.g. 
decentralized and hierarchical structures) other than the original centralized structure are taken to maintain 
the real-time feasibility of MPC controller. 
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4.3.1 Centralized Structure 

Freeway Networks  

(Hegyi et al., 2005a,b) apply MPC taking METANET as the predictive model to control and coordinate the 
freeway networks in the centralized structure (see Figure 2). To suppress shock waves, coordination of 
variable speed limits is studied adopting the MPC methodology. Simulations are carried out on a 
benchmark network consisting of a link of 12 km, where 6 segments of 1 km are controlled by speed limits. 
The simulation results show that the MPC controller is effective for coordinating speed limits against shock 
waves. The shock wave generated from the downstream end of link is successfully eliminated by the 
coordinated control of the speed limits. 

 

 

Figure 2: The MPC scheme for traffic control (Hegyi , 2004). 

Experiment results show that the speed limits can complement ramp metering, when the traffic demand is 
so high that ramp metering alone is not efficient anymore. Conclusions are also drawn that the coordinated 
and integrated control of speed limits and ramp metering results in a higher outflow and a significantly 
lower total time spent.  

Urban Networks 

In the 1980s and 1990s, a number of model-based optimization control strategies emerged: OPAC 
(Gartner, 1994), PRODYN (Farges et al., 1983), CRONOS (Boillot, 1992), and RHODES (Sen and Head, 
1997). The prediction models for these strategies are similar. They mainly predict the future traffic demands 
at the intersections through the historical data measured from the upstream detectors or the detectors of 
upstream links. These strategies showed advantages compared with the traffic-responsive strategies that 
do not use any predictions. However, this kind of prediction models is limited in the length of the time 
horizon over which they can predict. The longest prediction horizon is the time taken by the vehicles 
running from the upstream detector to the stop-line of the intersection. Therefore, the control strategies 
cannot look ahead far enough due to this limitation. 

In recent years, some macroscopic urban traffic models were developed for establishing more elaborate 
and effective model-based rolling horizon control approaches. These models can describe the traffic 
dynamic mechanics of the whole urban traffic network, and overcome the drawbacks of the previous 
models. 

The model proposed in (Barisone et al., 2002) and extended in (Dotoli et al., 2006) is computationally 
intensive and it can describe different traffic scenarios, but it is also complicated and needs historical data 
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to estimate the coming traffic flow rate of each intersection. A controller based on a rolling horizon 
methodology is developed by optimizing this traffic model fed with the historical data from last iteration. 

The model proposed by (Kashani and Saridis, 1983) has a lower modeling power, and in particular cannot 
depict scenarios other than saturated traffic. The model of (Hegyi, 2004; van den Berg et al., 2003, 2004) is 
an extension of the Kashani model that is capable of simulating the evolution of traffic dynamics in all traffic 
scenarios (unsaturated, saturated, and over-saturated traffic conditions) by updating the discrete-time 
model in small simulation steps. This model provides a good trade-off between accuracy and computational 
complexity. An MPC controller is developed, which gives good control effects. 

Mixed Freeway and Urban Networks 

Freeway networks and urban networks are closely connected. Congestion on the freeway often causes 
spill back of urban queues, slowing down the urban traffic, and vice versa. As a consequence, control 
measures taken in one of the two areas can have a significant influence on the other area. By connecting 
the urban traffic model (van den Berg et al., 2004) and the freeway traffic model METANET with the on-
ramp and off-ramp model, an integrated MPC controller is established to coordinate the mixed freeway and 
urban network (van den Berg et al., 2007). The coordinated control approach is proved to have a high 
performance. 

4.3.2 Distributed Structure 

Freeway Networks  

A distributed control structure can be developed to avoid the exponential growth of the computational 
complexity for the centralized MPC, when the network scale keeps on increasing. Game theory has been 
introduced to find the optimal coordination of ramp metering and variable speed limits in a large-scale 
freeway traffic network (Ghods and Rahimi-Kian, 2008). The large-scale freeway traffic network is then 
decomposed into sub problems, each of which is controlled by MPC based on the METANET model. Game 
theory (i.e. sample fictitious play, SFP) coordinates the sub-MPC controllers.  

In (Ghods and Rahimi-Kian, 2008), for a case study of 4 players (i.e. 2 on-ramp metering controllers and 2 
speed limit controllers), the SFP-MPC, which can compute in parallel, reduces the optimization time by 
81.1%, from 106 s to 20 s, compared with the original centralized MPC controller. 

Urban Networks  

Game theory is also used as distributed control method for urban networks in CoSIGN (Cheng et al., 2006). 
The decomposition of the problem can be accomplished by assuming that each signal in each period is an 
independent decision maker. To coordinate the decision makers (traffic signals), game theory is applied. If 
each decision maker who controls a time period for a signal is viewed as a player in the game, and the 
average travel time of all vehicles in the traffic network is viewed as a common payoff for every player, the 
coordinated-traffic-signal-control problem can then be represented as a game of identical interests. The 
Nash equilibrium of this game can be viewed as a coordinated local optimum. The equilibrium situation is 
not always uniquely determined and it is even possible that oscillations occur. Moreover, equilibrium may 
not always be a system optimum (Taale and van Zuylen, 1999).  

4.3.3 Hierarchical Structure 

Freeway Networks 

Due to the open-loop nature of the optimal control approach AMOC, the derived optimal control actions are 
deteriorated by all kinds of system errors, such as initial states estimation error, future disturbance 
prediction error, model parameter mismatch error, and unpredictable incident errors. Therefore, Kotsialos 
et al. (Kotsialos et al., 2005) proposed an MPC approach based on the AMOC algorithm under a 
hierarchical control structure. 
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The hierarchical control structure consists of three basic layers (see Figure 3): the Estimation/ Prediction 
Layer, the Optimization Layer, and the Direct Control Layer. The Estimation/ Prediction Layer receives 
historical information and real-time detected traffic states to generate the current state estimation and 
future predictions of the disturbances for the next layer. The Optimization Layer (AMOC) optimizes the 
control state trajectory over a future time horizon based on the initial states estimation and future 
disturbance prediction from the upper layer. Then, in the Local Direct Layer, the local ALINEA 
(Asservissement LINéaire d’Entrée Autoroutière) controller is adapted by the real-time optimized traffic set 
points obtained from the upper Optimization Layer. ALINEA is a local proportional ramp metering control 
strategy with feedback (Papageorgiou et al., 1991). 

 

 

Figure 3: Hierarchical structure (Kotsialos et al.,  2005) 

The rolling horizon hierarchical coordinated control has been applied to the Amsterdam ring-road, and 
outperforms the local ramp metering approach in terms of both efficiency and equity (Kotsialos et al., 
2005). The combination of AMOC with ALINEA preserves the positive features of both and cancels their 
deficiencies. 

 

Urban Networks  

A hierarchical control structure divides the complex control problem of a large traffic system into different 
control levels or layers. In different layers, control problems with different focuses are solved. Moreover, 
control problems with different details are addressed in different levels, e.g. the lower control level mainly 
focuses on local control in a more elaborate way, and the higher control level deals with network-wide 
coordinated control in a more general way.  
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Examples of urban hierarchical control structures include: Virtual-Fixed-Cycle OPAC (VFC-OPAC) (Gartner 
et al., 2001), the hierarchical version of OPAC and RHODES multi-level hierarchical variant (Mirchandani 
and Head, 2001). Both algorithms are conceptually similar, in that they consist of a three-layer architecture. 
The local layer calculates optimal signal switching sequences in a rolling horizon way, subject to 
constraints set by the higher levels. The middle layer coordinates the local controllers by optimizing offsets, 
while at the highest layer, synchronization takes place based on changing traffic conditions. 

In (Van Katwijk, 2008) a hierarchical traffic control structure is developed. For the bottom level, a multi-
agent approach is applied to reduce the computational complexity, and to add scalability to the control 
system. For the upper level, the local controllers are coordinated in both the microscopic and the 
macroscopic way. The traffic control problem is divided into several loosely coupled sub problems, such 
that the combination of all the solutions of the sub problems together approximate the solution of the 
original control problem. Each piece of infrastructure is represented by an agent that tries to attain its local 
objective in close cooperation with other agents. 

4.4 Rule-Based Strategies 

Rule-based systems solve a problem using “if-then” rules (Hayes-Roth, 1985, Russell and Norvig, 2003). 
These rules are constructed using expert knowledge and stored in an inference engine. The inference 
engine has an internal memory that stores rules and information about the problem, a pattern matcher, and 
a rule applier. The pattern matcher searches through the memory to decide which rules are suitable for the 
problem, and next the rule applier chooses the rule to apply. These systems are suited to solve problems 
where experts can make confident decisions. However, these systems work only with already created rules 
and in their basic implementation do not involve learning. 

4.4.1 Freeway Networks 

HERO 

When the congestion is imported from downstream, local ramp metering almost has no effect. To this end, 
coordinated control strategies are needed. HERO (HEuristic Ramp metering coOrdination) (Papamichail 
and Papageorgiou, 2008) is a simple rule-based coordinated ramp-metering strategy that applies ALINEA 
for the local regulators. HERO can coordinate freeway networks of arbitrary size, including a string 
containing a number of successive ramps. When the queue on a ramp with active metering exceeds a 
threshold so that it may soon reach the maximum admissible value, this ramp is defined as the master 
ramp. Coordinated control actions are then adopted at the slave ramps (the upstream ramps). The queue 
lengths of the slave ramps are increased to stay close to the queue length of the master ramp. In this 
coordinated control algorithm, the slave ramps hold back some traffic so as to release the pressure from 
the master ramp, and prevent congestion. When the relative queue of the master ramp decreases below a 
certain threshold again, the coordination stops. 

The ALINEA-based HERO is shown to outperform the uncoordinated local ramp metering and approximate 
the efficiency of the sophisticated optimal control schemes (e.g. AMOC) without the effort for real-time 
modeling calculations or external disturbance prediction. 

ACCEZZ 

Fuzzy logic systems, like humans, can handle situations where the available information about the system 
is vague or imprecise (Klir and Yuan, 1995; Nguyen and Walker, 1999). To deal with such situations, fuzzy 
sets are used to qualify the variables of the system in a non-quantitative way. The membership degrees 
can then be used to combine various rules and to derive conclusions. This process consists of three parts: 
fuzzification, inference, and defuzzification. Inference uses a set of rules based on expert opinions and 
system knowledge and combines them using fuzzy set operators such as complement, intersection, and 
union of sets. Fuzzy systems are often combined with other AI techniques for their complete deployment. 
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ACCEZZ (Adaptive and Coordinated Control of Entrance Ramps with Fuzzy Logic) (Bogenberger et al., 
2002) is a rule-based algorithm for coordinated ramp metering. In order to coordinate the local fuzzy ramp 
metering controllers, the shape of each input or output fuzzy set at each on-ramp location of the metered 
freeway is adjusted dynamically. So, one way of modifying the behaviour of the ramp metering algorithm is 
by recalibrating the parameters of each fuzzy set, i.e. redefining the linguistic variables. Learning/ 
optimization methods obtained from neural network theory or evolutionary algorithms are used to find the 
optimal parameters of the fuzzy sets aimed at minimizing the Total Time Spent in the metered freeway 
system. The macroscopic traffic model METANET was used to evaluate the different coordinated ramp 
metering strategies, and helps to find the best system-wide strategy. Alternatively, a genetic algorithm can 
be used to determine the optimal coordinated parameters of the fuzzy ramp metering controllers based on 
macroscopic traffic model METANET. The resulting systems are either called neuro-fuzzy or genetic fuzzy 
ramp metering. 

Comparing with five other standard ramp metering algorithms, i.e. demand-capacity, occupancy strategy, 
ALINEA, Denver’s HELPER algorithm, and Minnesota’s Zone approach, all developed versions of the 
ACCEZZ model family substantially improve the traffic conditions for the freeway analyzed. 

4.4.2 Urban Networks 

Fuzzy Rule Control System 

Similar to ACCEZZ for freeway networks, fuzzy-logic controllers with genetic algorithms or neural network 
algorithms as adapting approaches for the fuzzy rules are also applied in urban traffic systems. 

In (Heung et al., 2005), a decentralized urban traffic structure is proposed. It applies a fuzzy-logic controller 
as local intersection controller, and a dynamic-programming technique to coordinate the control results 
obtained from fuzzy-logic controllers and to derive the green time for each phase in a traffic-light cycle. In 
each fuzzy-logic controller, a GA algorithm is applied to learn and update in real-time the fuzzy sets. 

A more complex urban network control hierarchical architecture is given in (Choy et al., 2003) based on a 
fuzzy neural decision support principle. The architecture consists of three layers. The lowest layer consists 
of intersection controller agents that control individual, pre-assigned intersections in the traffic network. The 
middle layer consists of zone controller agents that control several pre-assigned intersection controller 
agents. The highest level consists of one regional controller agent controlling all the zone controller agents. 
In each layer, every agent can obtain traffic data and make decisions autonomously. Both lower layer 
agents and upper layer agents can send cooperative factors (requests) to each other. 

4.4.3 Mixed Freeway and Urban Networks 

HARS 

HARS (Het Alkmaar RegelSysteem) (Krikke, 2006;  Vrancken and Ottenhof, 2006; Vrancken et al., 2007), 
which means “The Alkmaar Control System”, is a state-of-the-art traffic management system implemented 
in the Alkmaar region in the Netherlands. The HARS system combines both a top-down traffic management 
strategy and a bottom-up traffic management strategy into a hierarchical traffic network management 
architecture. The two traffic management strategies complement each other. The top-down strategy makes 
decisions on the control schemes based on the predefined traffic scenarios stored in the expert database. 
In the bottom-up strategy, all road segments and nodes that connect the segments are defined as agents. 
The agent controllers compare their traffic state with a so called reference framework, which defines criteria 
that the traffic state on the link should meet. If the link’s traffic state deviates from the reference framework, 
or will deviate in the near future, links will communicate via intermediate nodes with other links and ask 
them to reduce outflow in order to meet the criteria. If the upstream link is not able to adjust its outflow to 
make the downstream link meet the criteria, then it will forward the service-call to its upstream neighbouring 
link(s). 
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Alkmaar has two types of control measures: traffic light systems and Dynamic Route Information Panels 
(DRIPs). The DRIPs will be used for rerouting and informing drivers. The traffic light systems will be used 
as an instrument to change intensities of traffic flows. 

4.5 Case-Based Strategies 

Case-based reasoning, as the name suggests, solves a problem using the knowledge that was gained from 
previously experienced similar situations (cases) (Aamodt and Plaza, 1994; Ritchie, 1990). In this way, this 
technique learns the way a new problem is solved and stores the new solution in a database. A 
disadvantage of this approach is that it might not be clear what should be done for a case that is not yet 
present in the case base. However, new cases could be added on-line to deal with this problem. 

To improve the existing dynamic traffic management systems, BSES (Boss Scenario Evaluation System) 
(De Schutter et al., 2003; Hoogendoorn et al., 2003a,b) based on fuzzy multi-agent case-based reasoning 
was proposed. BSES can evaluate control scenarios in real time, predicting their effects in terms of various 
measures of effectiveness, such as total travel time, vehicle loss hours, average speeds, fuel consumption, 
etc. The main characteristics of the system are 1) that it is case based, i.e., it uses either synthetic or real-
life examples of the effect of control scenarios under different circumstances; 2) that it determines the 
similarity of the current situation to different examples in the case base using fuzzy logic, and 3) that it is 
agent-based, meaning that it predicts the effects of the different measures for small sub networks and 
combines these predictions afterwards. 

Due to the exponential growth of the case base, straightforward application of case based reasoning to the 
decision support task is not feasible. Therefore, representative cases that can occur in practical situations 
are required to find out first how to reduce the case base scale. To address this problem, two aspects are 
introduced into the case-based reasoning framework: 1) Fuzzy logic is used to combine different cases in 
the case base (fuzzy case based reasoning); 2) The network to be controlled is divided in n partially 
independent sub networks for which the aforementioned fuzzy case-based reasoning approach can be 
applied. An iterative approach is used to find consistent solutions for the sub networks. 

The main advantages of the BSES approach are the speed of computation (compared to using traffic flow 
models), the ability to use actual knowledge directly (rather than general knowledge or simulated data), and 
the ability to learn from previous experiences (continuous step-wise learning). It turns out that the system is 
able to very quickly produce predictions on the impact of different control scenarios to the traffic operations 
in the network, and that it can thus support operators in their decision tasks in a real-time decision 
environment. 

4.6 Anticipatory Control Strategies Integrated with Traffic Assignment 

Traffic control discussed so far generally refers to controlling the traffic control measures (e.g. traffic lights, 
traffic information, and ramp-metering) to reduce the traffic delay in the traffic network. However, the 
travellers inside the network may change their routes, when the new traffic control measures change the 
traffic in the network. Therefore, traffic control and the behaviour of the travellers influence each other. As a 
result, a new traffic control strategy is constructed by combining the traffic control problem with the traffic 
assignment problem. The new traffic control problem is formulated into a bi-level program in which the 
upper level deals with the control problem, and the lower level with the assignment problem. 

In (Taale, 2008), an anticipatory control strategy is proposed to control and coordinate urban traffic 
networks by predicting the future traffic flows within the network taking the variation of the traffic 
assignment into consideration. As the traffic control and the behaviour of the travellers have different goals, 
game theory is applied to solve the bi-level optimization problem of the anticipatory control. The traffic 
control engineer and all the road users are then considered as two players. The traffic engineer controls the 
signal settings and the road users have route choice. 
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Figure 4: Framework for anticipatory control (adopt ed from (Taale, 2008)) 
 

Figure 4 illustrates the framework for developing, testing, and evaluating all kinds of network control 
strategies. The “optimization control plan” is the part where the anticipatory control strategy is determined. 
After the control plan is derived by certain algorithm, a simulation is started with a dynamic network loading 
model to see how traffic propagates through the network with this control plan; based on these results a 
dynamic traffic assignment is run to obtain a new route flow distribution, and again the dynamic network 
loading model is run to come to a final evaluation of the control plan. 

4.7 Summary 

From the view of traffic control methodologies, the existing coordinated traffic control strategies can be 
classified into MFD-based (Macroscopic Fundamental Diagram based) approaches, case based 
approaches, rule-based approaches, anticipatory control approaches, optimal control approaches, and 
MPC (Model Predictive Control) approaches under centralized, distributed, and hierarchical control 
structures. 

Table 2: Comparison of the features for different t raffic coordination control 
methodologies 
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The main characteristics of the methods discussed above are summarized in Table 2 and Table 3. As 
Table 2 illustrates, in general, the more elaborate information that the controller takes into consideration, 
the better control result will be obtained. The centralized MPC approach makes use of the total global 
information by applying a traffic network model and feeding the model with real-time detected traffic states. 
So, the centralized MPC approach has the highest coordination control quality. However, it also has a high 
computational complexity at the same time, and needs more efforts to implement. Therefore, distributed 
and hierarchical MPC structures are developed to solve this problem by making some compromises. They 
give up a part of the global information to obtain simplified sub-problems, and improve the applicability of 
the approaches by controlling and coordinating the sub-problems. Moreover, a distributed structure also 
makes the controller scalable.  

Table 3: Comparison of the coordinated traffic cont rol approaches 

 
 

Rule-based and case-based approaches are control strategies mostly based on historical information and 
expert experience. Because they are comparatively easy to implement, simple rule-based and case-based 
approaches first have been applied in traffic management system to coordinate traffic networks at the 
beginning. Moreover, they are the control approaches that are easy to coordinate all kinds of traffic control 
measures and manage large complex transportation systems. However, the control plans obtained by rule-
based and case-based strategies are in general not optimal solutions. But, some smart rule-based and 
case-based control systems (e.g. HERO, ACCEZZ, HARS, BSES, etc.) can adjust themselves by updating 
their rules or databases according to the real-time measured traffic states or the predicted traffic states 
through the traffic models. This makes the rule-based and case-based approaches more adaptive to the 
variation of the real traffic. 

In fact, when the traffic control plans change, the traffic flows in the traffic network will be reassigned, 
because the road users will also change their routes. Therefore, it is more realistic to also consider the 
traffic assignment while controlling the traffic. The anticipatory control approach constructs a bi-level 
program problem, in which the upper level deals with the control problem, and the lower level with the 
assignment problem. The control results of the anticipatory control are good because of taking the dynamic 
traffic assignment information into consideration. However, because of the iterative feature of the solver, 
the anticipatory control approach suffers the same drawback as the MPC control approaches, i.e. high 
computational complexity. Just like the centralized MPC, the anticipatory control can also be used for long-
term traffic control and planning. 
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5.1 Introduction 

In an internal meeting between FileRadar and KULeuven, the following open issues were identified: 

� Fundamental diagram parameter estimation 

� Prediction of ramp demand and split rates and estimation at unmeasured locations 

� Alternatives to Extended Kalman-Filtering for state estimation 

In the following sections, an overview is given on the literature that was found regarding these specific 
topics. 

5.2 Fundamental diagram parameter estimation 

This section provides a non-exhaustive overview of the state-of-the-art on estimation of the parameters of 
the fundamental diagram used in (first-order) dynamic network loading (DNL) models. The focus hereby is 
on the capacity C, since this parameter has the most influence on congestion formation. The other 
parameters, free-flow speed vf and jam density kj are very briefly discussed thereafter. 

5.2.1 Capacity estimation methods 

Before discussing various capacity estimation methods, a proper definition is needed of what exactly is 
‘capacity’. The Highway Capacity Manual (HCM) defines capacity as the maximum rate of hourly flow that 
can traverse the uniform cross-section of a road segment under prevailing road, traffic and control 
conditions (Transportation Research Board, 1994). This definition does not clearly distinguish between the 
maximum flow rate of (free) flowing traffic (before a breakdown, i.e. a transition from a flowing to a 
congested traffic state at a bottleneck, occurs) and that of traffic accelerating from the head of a queue. We 
denote the former as pre-queue capacity and the latter as queue discharge capacity. The difference 
between the two is the capacity drop, which may vary from site to site and day to day. While other 
definitions of specific types of capacity may be found in the literature (see e.g. Minderhoud et al., 1997) we 
will use the above two definitions in the following. 

While capacity in DNL applications is often regarded as deterministic, several studies acknowledge that 
capacity is in fact stochastic and a distribution should be considered rather than a single value (e.g. Ozbay 
& Ozguven, 2007; Geistefeldt & Brilon, 2009; Tu et al., 2010; Muralidharan et al., 2011). Firstly, the 
occurrence of breakdown is probabilistic in nature. Furthermore, the observed capacity values both pre-
breakdown and after queue formation may vary strongly from day to day. This is influenced both by obvious 
and measurable factors such as incidents and weather conditions, but also unnoticeable or (almost) 
immeasurable variations in driver behaviour or vehicle characteristics or composition (e.g. percentage of 
trucks). Moreover, Muralidharan et al. (2011) point out that capacities are also significantly correlated 
across different sections.  

Therefore, the analyst must choose between incorporating the stochasticity of capacity in the model and a 
deterministic model. In a deterministic model it should be decided whether or not to adopt dual capacities, 
or which one to choose (Dervisoglu et al., 2009).  

The following overview collects both stochastic and deterministic capacity estimation methods. Also, some 
methods ignore the dual nature of capacity, while other methods focus on estimating either pre-queue or 
queue discharge capacity. 

5 Discussion On Identified Open Issues 
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The following overview is largely based on that of Minderhoud et al. (1997), complemented with more 
recent studies. Minderhoud et al. (1997) distinguish various approaches based on data availability and 
requirements (Figure 5). The main categorization is between direct-empirical and indirect-empirical 
methods. The former type of methods estimate capacity from data measurements on the site. The latter 
can be used if data is lacking.  

 

 

Figure 5: Classification of capacity estimation met hods (Minderhoud et al., 1997) 

The applicability of different methods depends not only on the type of data, but is influenced by other data 
characteristics such as the aggregation interval of the data, the location where data is collected (compared 
to the bottleneck’s location) and the traffic conditions for which data is available. Before going into the 
methods themselves, these additional data characteristics are briefly discussed. 

5.2.1.1 Factors influencing capacity estimation 

Traffic conditions 

Most methods require the flows corresponding to the capacity state itself to be measured. If such data is 
not available, the choice of a suitable estimation method becomes rather limited (e.g. the fundamental 
diagram method). Banks (2009) presents an automated procedure to identify periods of pre-queue and 
queue discharge capacity from flow and speed data. 

Location of data observations 

The location at which data should be observed is tied to the traffic conditions one wishes to observe. Most 
notably, location choice is important when estimating queue discharge capacity (e.g. with the empirical 
distribution method). In this case, congestion should occur upstream of the measurement location at the 
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bottleneck. Downstream and at the measurement location, no congestion should occur to ensure that 
indeed the capacity of this bottleneck is measured and not the flow imposed by the spillback of some 
bottleneck further downstream (Minderhoud et al., 1997). For this, additional data such as speeds and/or 
densities are needed. 

Data aggregation interval 

The aggregation interval of the data is often chosen quite arbitrarily. One should bear in mind that small 
aggregation periods generally produce a higher capacity estimate than longer periods. Tu et al. (2010) find 
that 15-min aggregate capacity is 5% lower than 5-min aggregate capacity from empirical data on Dutch 
freeways. 

According to the HCM (REF), a 15-min interval is considered to be the interval during which stable flow 
exists. Minderhoud et al. (1997) state that the 15-min interval is a good compromise between 
independence of the observations, smoothing local fluctuations and that the capacity can be maintained for 
longer than the applied aggregation interval (see also van Toorenburg, 1986). Regarding the impacts of 
short (less than 15-min) aggregation intervals on traffic flow rate, Qin & Smith (2001) state that stable flow 
rates may be calculated using aggregation intervals as short as 10 min and that statistically significant 
improvements in stability can be achieved by adding 2 min to any measurement interval. However, many 
studies use an aggregation interval of only 5 min (Ozbay & Ozguven, 2007; Geistefeldt & Brilon, 2009; 
Dervisoglu et al., 2009). 

5.2.1.2 Direct-empirical methods 

Headways, traffic volumes, speed, and density are traffic data types used to identify four groups of direct-
empirical capacity estimation methods. 

Estimation with headways 

These methods derive a deterministic capacity value from the (distribution of) observed headways. They 
can be applied only per lane, but results per lane may of course be aggregated into a capacity value for a 
cross section. These methods are not discussed here, as usually intensity, speed and density data is more 
readily available on freeways than headways. 

Estimation with intensity 

Two approaches can be distinguished (see Figure 5). The observed extreme value methods use only 
known (observed) maximum traffic volumes as capacity estimates. The expected extreme value methods 
estimate capacities as higher-than-observed intensities using statistical methods. Some specific methods 
are mentioned below. None of these methods is recommended by Minderhoud et al. (1997). Therefore, 
these methods are only very briefly discussed. 

Observed extreme: 

� Bimodal: This method estimates capacity as the mean of the capacity part of a bimodal distribution of 
observed traffic flows – the first mode being measured demand below capacity and the second 
capacity flow rate. The problem is that it is difficult (and often arbitrary) to determine which distributions 
to assume, which depends strongly on the observation period. Moreover, this method can only be 
applied if indeed a clear bimodal flow distribution is observed. 

� Selected maxima: These methods estimate the capacity based on the distribution of maximum flow 
rates measured in each observation period (e.g. each day). Some percentage value, e.g. the average 
or the 90th percentile may be assumed as the deterministic capacity value.  
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Expected extreme: 

� Direct probability method: A prediction of the capacity (largest possible value) is made assuming that 
the traffic flows follow a theoretical model like the Poisson process. The resulting capacity estimate is 
to be considered as an exceptional, not-yet-observed extreme. 

� Asymptotic method: This method is similar. Here, the capacity is estimated as the maximum flow rate 
predicted from the distribution of observed extremes in selected aggregation intervals. 

For the above methods, the capacity estimate depends strongly on the duration of the aggregation interval. 
Moreover, since only intensities are used, it is very difficult to ensure that indeed capacity of the site is 
being measured – let alone which type (pre-queue or queue discharge) – instead of the demand or the flow 
in a queue spilling back from downstream.  Minderhoud et al. (1997) state that the result of these methods 
is of little practical value for freeway modelling. 

Estimation with intensities and speeds 

These methods do take into account the traffic state, using the speed data. In particular for measuring 
queue discharge capacity of a site, it is crucial to know the traffic state upstream and downstream. We 
describe in the following the empirical distribution method, the product limit method, the maximum-
likelihood method and the direct breakdown probability method. 

The data points are placed into one of two categories: demand (free-flowing conditions upstream of the 
bottleneck) or capacity measurements (congestion upstream). The empirical distribution method uses only 
the capacity state observations. The capacity observations over the entire observation period are ordered, 
so that the empirical distribution function F of the capacity is obtained. F(q) indicates the probability that the 
capacity value is lower than a given value q. Often, a deterministic value for the capacity is taken at F(q) = 
0.5 (the median). Munoz et al. (2004) choose the mean value. The empirical distribution method is well 
suited to estimate queue discharge capacity (Hoogendoorn & van Lint, 2006). 

The product limit method is highly similar to the empirical distribution method. The difference is that it also 
extracts information from the demand measurements. The high-flow demand measurements are used to 
improve the empirical distribution function of capacity values. A function G(q) results that indicates the 
probability that the capacity is higher than q. F(q) then equals 1 – G(q). The general expression of the 
product limit method is (Minderhoud et al., 1997): 
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It should be noted that the above approach fails to acknowledge the capacity drop phenomenon (see 
Geistefeldt & Brilon, 2009). Indeed, from a demand measurement it is derived that the capacity 
corresponding to that observation should be at least equal to this demand measurement. However, the pre-
queue capacity may be higher than the queue discharge capacity. Therefore, mixing this information with 
observations of the queue discharge capacity may lead to inconsistent result. Geistefeldt & Brilon (2009) 
reformulate the product limit method by only considering flowing measurements. G(q) is formulated similar 
to (0.2), however, qi∈{B} replaces the capacity observations. {B} is the set of breakdown observations, i.e. 
high intensities measured in a free-flow state after which a breakdown to a congested state occurred. This 
adapted product limit method is a consistent way to estimate (the distribution of) the pre-queue capacity. 
Indeed, while the queue discharge capacity can only be derived from measurements with upstream 
congestion, all free-flowing observations do give information about the pre-queue capacity, regardless of 
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whether or not a breakdown follows, in the sense that the momentary pre-queue capacity corresponding to 
that observation is at least equal to that free-flowing measurement.  

The maximum-likelihood method is a parametric estimation method. The parameters of a chosen 
distribution function are determined such that the (Log-)Likelihood function is maximized (see e.g. Brilon et 
al., 2005 and Geistefeldt & Brilon, 2009). According to Geistefeldt & Brilon, 2009, an empirical comparison 
between different function types based on data samples from different German Autobahn sections revealed 
that freeway capacity is Weibull distributed (Zurlinden 2003; Geistefeldt 2007). Ozbay & Ozguven (2007) 
comes to the same conclusion. Polus & Pollatschek (2002), however, suggest a shifted gamma distribution.  

Finally, the direct breakdown probability method (see Lorenz & Elefteriadou, 2001 and Geistefeldt & Brilon, 
2009) defines the pre-queue capacity as a function of breakdown probability. If a threshold breakdown 
probability is selected, the intensity corresponding to that probability can be considered the capacity. 
However Geistefeldt & Brilon (2009) states that this method significantly underestimates the breakdown 
probability at high traffic flows and is thus to be avoided.   

Estimation with intensities, speeds and densities 

These methods may be helpful if data on intensities, speeds and densities are available, but observations 
of the capacity state itself are lacking. Two methods are discussed below: the fundamental diagram method 
(offline) and the related real-time capacity estimation method. 

Fundamental diagram:  

This method exploits the fundamental relationship between intensity, (harmonic mean) speed and density. 
An advantage of this method is that it is not absolutely necessary to observe capacity flow. An important 
drawback of this method is the need for a mathematical model that fits the observed data. Obviously, the 
resulting capacity depends on the fitting model that is used. Furthermore, the parameters of the chosen 
model should be calibrated for each site separately and a considerable amount of data is needed (over a 
broad range of intensities) to allow a reliable fitting (Minderhoud et al., 1997). This approach is used e.g. by 
Qin & Smith (2001). 

Real-time estimation:  

This method for real-time traffic predictions and control updates a reference fundamental diagram, 
determined earlier under predefined conditions. This is done by determining a scaling factor to adapt the 
pre-defined intensity-occupancy relation2 to the current weather and traffic (composition) conditions. This 
scaling factor is obtained by comparing predicted and measured intensities. The capacity estimate is 
derived from the intensity that corresponds with the assumed critical occupancy. This approach is 
supported by the observation that critical occupancy seems less susceptible to stochastic variations than 
the capacity (Papageorgiou et al., 2008). According to Minderhoud et al. (1997), often a critical occupancy 
of 9% is used in this method. Papageorgiou et al. (2008) claim significantly higher values (18-27%). In any 
case, the critical occupancy is site-specific and dependent on circumstances (although less so than the 
capacity). Methods to estimate critical occupancy in real-time have been proposed by Smaragdis et al. 
(2004) en Kosmatopoulos et al. (2006).  

5.2.1.3 Indirect-Empirical Methods 

If no site-specific data is available, one has to resort to indirect-empirical methods. Firstly, micro-simulation 
models could be used to estimate the capacity. A notable choice is FOSIM, which has been specifically 
calibrated to model traffic on Dutch highways. Secondly, some notion about an appropriate capacity value 
could be obtained from general guidelines given by for example the HCM (Transportation Research Board, 
1994) or the Dutch freeway capacity manual ‘Capaciteitswaarde Infrastructuur Autosnelwegen’ (CIA) 

_________________________ 
 
2 According to van Arem & van der Vlist (1992), a quadratic function may be used. 
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(1999). Capacity estimates for different types of cross sections and using different estimation methods 
based on two years of empirical data on Dutch highways is presented in Tu et al. (2011). 

If available, data from adjacent or nearby sites may be useful to improve the estimate, since Muralidharan 
et al. (2011) show that capacities are highly correlated across different sections. 

5.2.2 Free-flow speed 

The free-flow parameter vf is commonly calibrated by performing a least-squares fit on the available flow-
density data in uncongested conditions (see e.g. Munoz et al., 2004; Dervisoglu et al., 2009). For instance 
in Dervisoglu et al. (2009), uncongested condition are identified as the time instants where the speed was 
reported to be above 55 mph. This is of course dependent on road type, speed limit, etc. Contrary to 
capacity, the free-flow speed shows negligible variability (Muralidharan et al., 2011) and may thus be 
modelled as a deterministic value.  

5.2.3 Jam Density 

The jam density kj and the maximum spillback speed w at a specific location may be determined by a least-
squares fit on the congested flow-density data. Therefore, first the critical density kc that corresponds to 
capacity flow is determined. Munoz et al. (2004) and Dervisoglu et al. (2009) determine kc simply as the 
intersection point of the capacity and free-flow speed estimated earlier. The data points for which k > kc are 
then included as congested measurements to fit w and kj. The negative slope of the regression line is w; 
the point where the regression line crosses zero flow is kj. Often, a constraint is added to ensure that the 
regression line starts from the capacity, i.e. the tip of the fundamental diagram. Munoz et al. (2004) perform 
a least-squares fit directly on the data, whereas Dervisoglu et al. (2009) first group all data into non-
overlapping density-flow bins (collecting 10 data points each). The data pairs used to fit the regression line 
are the mean density of a bin paired with the largest non-outlier flow value.  

Finally, Muralidharan et al. (2011) note that the variability of the spillback speed w has a relatively 
insignificant effect on freeway performance compared to variability of capacity. Also, they state that the 
spillback speed w of a section is virtually uncorrelated with the capacity of the section and with parameters 
of adjacent sections. We conclude that also the spillback speed w may well be modelled as a deterministic 
value. 

5.2.4 Conclusion 

This section discussed the estimation of the parameters of the fundamental diagram to be used in first-
order DNL models. It appears that the free-flow speed vf and the jam density kj (and spillback speed w) can 
be estimated with a least-square fitting on the uncongested and congested flow-density data respectively. 
Of course, this implies that sufficient data should be available. Since the variability of these parameters is 
found to be very low (for vf) or negligible compared to variability of the capacity (for w and kj), these 
parameters may be modelled as deterministic values. Also, it seems justified to adopt estimates for these 
parameters from adjacent sections or time periods, should data for a specific location and time be missing; 
particularly for the free-flow speed vf. 

Reliable estimation of the capacity C is significantly more troublesome. Table 4 summarizes the findings of 
Minderhoud et al. (1997). We should add to this that Minderhoud et al. (1997) explicitly state that no 
method is satisfactorily reliable. 
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Table 4: Characteristics of various capacity estima tion methods (Minderhoud et al., 1997) 

 

The choice of an appropriate capacity estimation method is largely determined by data availability. 
Furthermore, the type of capacity – pre-queue or queue discharge – one wishes to estimate influences this 
choice. Assuming data on intensities and speeds are available, the empirical distribution method is 
recommended for estimating queue discharge capacity and the product limit method as defined in 
Geistefeldt & Brilon (2009) and the Maximum-Likelihood method3 suit pre-queue capacity estimation 
(Minderhoud et al., 1997; Hoogendoorn & van Lint, 2006). The type of application is decisive for the choice 
of whether to implement pre-queue or queue discharge capacity in the DNL model. A pre-queue capacity is 
preferable if the modeling of the maximum possible traffic flow is needed, for example in case of ramp 
metering (traffic flow should not be larger than the given pre-queue capacity). Queue-discharge capacity on 
the other hand may be used for delay estimation at bottlenecks (Tu et al., 2010). 

Notably, Table 4 also indicates which methods provide a single, deterministic capacity estimate and which 
ones produce capacity distributions. Considering the stochastic nature of capacity and the relatively 
significant impact its variability has on the traffic conditions, the latter is to be preferred. Probabilistic 
distributions of capacity provide a far more complete picture than one deterministic value. Moreover, 
Muralidharan et al. (2011) state that the capacity distribution of the entire freeway needs to be modelled as 
a multidimensional joint distribution, since they found a strong correlation between the capacities of 
adjacent section.4 This also implies that capacities for sections where data is lacking could be derived from 
the joint capacity distribution model. 

_________________________ 
 
3 Geistefeldt & Brilon (2009) find that the product limit method and the Maximum-Likelihood technique 
always lead to a rather good coincidence of the estimated capacity distribution functions. 
4 They excluded data points in sections that were observed either as a result of congestion spillback or 
obvious lack of demand. 
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From a capacity distribution, an appropriate capacity value may be selected based on additional 
information on momentary circumstances (e.g. regarding weather or fleet composition) to model specific 
conditions. In absence of such information, determining a deterministic capacity value is difficult. The 
specific application may influence this choice, for instance: is a worst-case or rather a best-case scenario 
aimed for? In general, Tu et al. (2010) advise to use the median value to avoid the influence of outliers 
(which may strongly affect the mean value) – this seems to be supported by Minderhoud et al. (1997) as 
well. 

Finally, it should be noted that the results of any capacity estimation are significantly influenced by the 
choice of the data aggregation interval. Tu et al. (2010) show for instance that the capacity differences 
resulting from 5 min and 15 min aggregation intervals vary from 0% and 23% with a mean value of 5% and 
a standard deviation of 3.3%. Most studies seem to choose either 5 or 15 min without a proper motivation. 
The HCM (Transportation Research Board, 1994) considers 15 min to be the interval during which stable 
flow exists. Qin & Smith (2001) claim that a study of Smith (2001)5 found that stable capacities may be 
calculated from aggregation intervals of 10 min. However, adding 2 min to any aggregation interval is 
stated to statistically significantly improve the stability. In conclusion, it seems unadvisable to adopt very 
short aggregation intervals such as 5 min. 

5.3 Ramp Demands and Split Rates 

The demands from on-ramps and the split rates towards off-ramps are boundary conditions to the freeway 
network. Predictions of these inputs can be made for instance by time series using both historical profiles 
and real-time data (Section 5.2.1). Ideally, this data is obtained from flow measurements on the ramps 
themselves. Temporal unavailability of data due to malfunctioning detectors may be solved by interpolation 
techniques (see Boyles, 2011 for an overview). For unmeasured ramps (without detectors), this data is 
permanently unavailable.  

Section 5.3.2 highlights some existing methods to derive this data from other detector measurements 
and/or local characteristics. 

5.3.1 Time Series Prediction 

To come up with traffic state prediction, predictions of the boundary conditions of the network are needed. 
Ramp flows expected in the future need to be forecasted during the prediction horizon. More specifically, 
for the first-order traffic flow prediction model used in this project, the demands at on-ramps and the split 
rates at off-ramps need to be predicted. Time series prediction methods seem appropriate for this due to 
their relative simplicity and low computational effort. Preferably, information on historical flow profiles is 
used, as well as recent (e.g. the last 30 min) flow measurements. Of course, if flow measurements are 
lacking, one can use only historical or whatever information that is available; see the next section for some 
options to estimate flows at unmeasured locations.  

Several studies in the state-of-the-art apply time series to predict traffic variables (mostly speeds, flows 
and/or travel times), using both historical and real-time information. Some of the more recent that aim to 
predict traffic flows are the following. Min & Wynter (2011) apply a multivariate spatial-temporal 
autoregressive model (VARMA). Zhang et al. (2011) propose a hybrid methodology combining the linear 
SARIMA model and non-linear Support Vector Machines Regression. More details and references on time 
series prediction models were presented in Section 1.2.2.2.  

In the remainder, we elaborate in more detail on the approach of RENAISSANCE (Wang et al., 2004), 
which specifically aims to predict the network boundary conditions such as on-ramp inflows and off-ramp 
split rates. See also Tampère et al. (2009) for more details. 

_________________________ 
 
5 Qin & Smith (2001) fail to provide a reference for the Smith (2001) study. We were unable to find it 

ourselves. 
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The future boundary conditions (over a user-defined prediction time horizon) can be predicted from 
smoothed historical profiles, a trend extrapolation of recent estimates (obtained from an extended Kalman 
Filter state estimator) or by a combination of these two. In the combined approach, the prediction for a 
near-future time instants will rely more heavily on the recent estimates, while further away predictions tend 
more towards the historical profile. Trend extrapolation and the possible combination with historical profiles 
are discussed below. 

5.3.1.1 The Trend Extrapolation 

First, for each boundary condition (e.g. a ramp flow or split rate) a linear function is fitted – using standard 
regression formula - through the N most recent estimates  ( )d̂ κ : 
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In (0.3), k is the current estimation time step where the prediction starts from. A trend extrapolation Kp time 
steps into the future is done with the obtained fitting parameters: 
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The trend compliance parameter 
[ ]0,1ε ∈

 is user-defined. For 
Ea  (the starting point of the extrapolation), 

there are two options: 
( )ˆEa d k=

, i.e. the first value ( )Ed k  in the extrapolation is equal to the most recent estimate (only the 
fitted 

Fb  parameter is used in this case)  

Or 
E Fa a= , i.e. both fitting parameters 

Fa  and 
Fb  are used and the first value in the extrapolation is 

( ) ,E Fd k a=   

Predictions based on extrapolation only are, by construction, straight lines. 

5.3.1.2 Combination With Historical Profiles 

The following options exist in RENAISSANCE for combining the historical value ( )hd κ  with the trend 
extrapolation ( )Ed κ  into a prediction value ( )pd κ  for a future time step κ : 

No historical profiles are used, only trend extrapolation as described above. The predicted value 
( ) ( )p Ed dκ κ= . 

A weighted sum of the extrapolated value and the historical value is made, using constant weights. 

A transition between trend extrapolation and the historical profile is performed. The weights of the historical 
value and the trend extrapolation linearly increase (decrease) from 0 (1) at time step k to 1 (0) at the end of 
the fade over period.  

The historical profile is used in its entirety, but it is shifted so that the starting point coincides with the 
starting point of the trend extrapolation:  
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In Tampère et al. (2009), N in (0.3) was chosen (after some rough calibration) so that estimates from the 
last 30 minutes were taken into account. This was found to be a good compromise between the smoothing 
of low-significance high-frequency “noise” and a relatively fast identification of significant trend changes 
(e.g. at the start of the peak period). For similar reasons, the trend compliance ε  was set to 0.5. Only for 
split rates, 0ε =  was used. This implies the assumption of constant split rates over the prediction horizon, 
which is reasonable given the fact that split rates are usually quite stable. When using historical data in 
combination with extrapolation for the boundary variable prediction, the third option described above was 
used, with a transition period of 30 min (i.e., equal to the prediction horizon). Hence, combined predictions 
are (generally) nonlinear curves starting at the current estimate and ending at the respective historical 
value. Finally, in Tampère et al. (2009), an upper bound for the predicted value of the boundary variables 
was generally set to the maximum observed value of that variable, increased by 10-15%. The reason for 
this is to exclude unrealistic predictions due to exaggerated trends.  

It is concluded in Tampère et al. (2009) that, while all predictions are fairly reasonable, predictions 
combining historical data and trend extrapolation of recent estimates are generally slightly better. 

5.3.2 Unmeasured Locations 

In the following, we are concerned with deriving information on unmeasured ramp flows. In the future, 
floating car data may provide a solution on ramps without permanent detectors. Currently, however, floating 
car data are not available for this project. 

The problem of estimating missing ramp flow data may range from quite trivial to highly challenging. The 
former applies to situations where flow measurements on the freeway are available before the off-ramp, 
after the on-ramp and in between the two. Provided the absence of congestion, the missing data can be 
easily retrieved based on conservation of vehicles throughout the freeway complex. Congestion on the 
ramps or a non-negligible spatial distance between freeway detectors may render the derivation of this 
relationship more troublesome. An estimation method that may be helpful in such cases is presented by 
Muralidharan et al. (2009). This is described in Section 2.2.1. If also flow measurements on the freeway are 
incomplete, accurate estimation of ramp flows becomes difficult. Section 2.2.2 highlights some studies that 
estimate annually average daily traffic counts using various techniques such as standard regression 
techniques, geographic weighted regression and geostatistical methods. Also, a method based on static 
assignment is included. 

5.3.2.1 Ramp Flow Estimation With Full Availability  Of Freeway Measurements 

Muralidharan et al. (2009) provide an automated procedure to determine missing ramp flow measurements. 
This method uses an adaptive identification techniques adopted from iterative learning control (Messner et 
al., 1991 and Horowitz et al., 1991) which minimizes the error between measured and simulated densities 
at freeway detector locations. The simulation model used is the Aurora Link-Node Cell Transmission Model 
(LN-CTM), see Kurzhanskiy (2007) and Muralidharan et al. (2009) for details.  

The estimation procedure in Muralidharan et al. (2009) is an iterative process, in which the on-ramp 
demand and off-ramp split rate estimates are updated with each run of the LN-CTM until the error between 
measured and simulated densities is sufficiently small or converges. The update functions that are used to 
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determine ramp demands and split rates depend on the traffic regimes upstream and downstream (free 
flow or congestion). 

This method assumes that detectors are available in each freeway sections providing the density 
measurements. Also in the section between off-ramps and on-ramps a detector location is required to 
conclusively determine the off-ramp split rates and on-ramp demands. Not surprisingly, this allows 
estimating these variables with high accuracy, as shown by a case study on a 26 mile portion of the I210E 
freeway in California. The next section discusses methods that may be used when detector locations are 
scarcer. 

5.3.2.2 Ramp Flow Estimation With Incomplete Availa bility Of Freeway Measurements 

Furthermore, another field of literature was found that uses standard regression techniques, geographic 
weighted regression and geostatistical methods to estimate annually average daily traffic counts (AADT) 
(veh/day). Although, in order to be useful for prediction modeling, a dynamic profile would have to be 
derived from these AADT – that would still only represent average conditions – a brief introduction on this 
literature may enrich our expertise.  

The following very briefly summarizes the overview in Selby & Kockelman (2011). Each mentioned method 
takes known counts at available detector locations and uses additional information (e.g. local land use and 
road characteristics) to make an estimate for unmeasured locations. These can be divided into future-year 
(or future-period) estimation and same-year estimation methods. This discussion is limited to the latter.  

Zhao and Chung (2001) use local information on employment, population and road characteristics to 
estimate AADT in a least-squares regression. They found that number of lanes, road function, regional 
access to employment, employment in an adjacent buffer zone, and direct access to expressways have the 
largest explanatory value. Zhao and Park (2004) performed a similar study, replacing the least-squares 
with a geographically weighted regression, which calculates local parameters from a distance-based 
weighting function. This specification clearly outperformed the least-squares method on the same data. 
Wang and Kockelman (2009) used ordinary kriging, which is a geostatistical method that estimates an 
unknown global mean value as well as the spatial correlation with nearby data points. However, ordinary 
kriging does not allow accounting for location-specific characteristics. According to Selby & Kockelman 
(2011), this leads to significant errors. Eom et al. (2006) use universal kriging, which does not assume a 
global mean and combines the distance-based variance with a trend, such as a linear, parametric function. 
Universal kriging makes use of both spatial and local information. Their results suggest that universal 
kriging improved the estimation results. This is confirmed by the case study in Selby & Kockelman (2011), 
which is briefly described below. 

The estimated AADT (veh/day) (in matrix Z) are obtained from the following problem formulation (Selby & 
Kockelman, 2011): 

 

 Z X β ε= +  (0.6) 

 

Therein, X is the data matrix, β  are linear parameters and ε  is the error term, which is defined as a 
function of the distances between the locations of data points. Selby & Kockelman (2011) use speed limit, 
number of lanes, road type, and population and employment densities as data variables. The β  
parameters and the parameters in the error function ε  are estimated via a weighted least-squares 
regression using the AADT at measured locations. Then, using these values, estimations for the AADT at 
unmeasured locations can be made. Selby & Kockelman (2011) present a case study for the state of 
Texas, USA. The available detector locations are rather sparse (about 0.2 locations per square mile). Their 
results show a large average absolute error of about 60% between estimated and measured counts for the 
validation data set. However, the results on the interstates are significantly better (20% average absolute 
error). They show that their results are a significant improvement over non-spatial regression techniques. 
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Surprisingly, they found that using network distances in the error term functions provides no significant 
improvement over using Euclidean distances, which are much easier to calculate. 

5.3.3 Conclusion 

Regarding the prediction of boundary flow and split rate values at measured locations, the use of time 
series seems advisable for reasons of simplicity and computation time. The RENAISSANCE approach has 
been thoroughly described. 

At unmeasured locations, both historical and real-time data from detectors is missing. In this case, an 
estimation of the flow profiles has to be performed. Likely, only a rough estimation with quite high errors will 
be possible. Firstly, the approach of Muralidharan (2009) has been highlighted, which may be interesting 
since it is automated and its estimates depend on the traffic states, instead of simply assuming free flow 
conditions to always hold. Secondly, some (geo)statistical literature to estimate Annual Average Daily 
Traffic (AADT) volumes has been described.  

Typically, these studies aim to produce one average value, but the same techniques could be applied to 
estimate seasonal or day-of-week traffic volumes. Before use in a traffic flow prediction model, these AADT 
would first have to be disaggregated to dynamic flows varying within-day. Although the reported accuracy 
of the mentioned studies is already quite low for these daily averages, still this overview may be useful to 
add to our expertise and for FileRadar to improve on their current ad-hoc methodology to estimate flows 
and split rates at unmeasured locations. 

5.4 Alternatives to Extended Kalman-Filtering for State Estimation 

5.4.1 Problem Analysis 

In online traffic flow propagation methods, a crucial step is the combination of on the one hand the prior 
estimate (i.e. the model prediction that incorporates all previous measurement information and the system 
dynamics) and on the other hand the actual measurement data. This problem is known in literature as 
‘state estimation’, ‘statistical estimation’ or ‘data assimilation’. 

Just like many of the online traffic simulators of section 2.3.1, the FileRadar application used in this project 
is based on Kalman filter theory. This theory assumes the state variable estimates and noises (both system 
and measurement noise) to be normally distributed, and the system model to be linear. Under those 
conditions, Kalman filter is one of the simplest algorithms for recursive Bayesian estimation, guaranteeing 
optimality for the posterior estimate.  

There are several difficulties involved when applying Kalman filtering on a large traffic network in a real-
time setting with a cell transmission traffic (CTM) flow model: 

CTM is not a linear system model. Rather it is a piecewise linear model. As a consequence, the model 
needs to be linearized at every time step, yielding an extended Kalman filter (Tampère & Immers, 2007). 
EKF intrinsically means that one loses the optimality property of the linear Kalman filter and the state 
estimation becomes heuristic. 

A large traffic network requires many state variables in the CTM. As a consequence the matrix-based EKF 
procedure in principle involves inversion of prohibitively large (be it sparse) matrices. 

The consequence of the non-linearity of the system model is serious, as Figure 6 illustrates. As one is 
uncertain about the state (e.g. density k), the linear approximate system model may be different dependent 
on k (in this example: piecewise linear with different slope depending on k, i.e. the system state k will be 
transformed radically different, depending on the linear regime it belongs to). Hence, the unimodal 
probability distribution of k may easily break up into multimodal distributions, as the figure illustrates. Yet, 
EKF will keep on approximating this pdf as a Gaussian distribution. As the figure illustrates, this problem 
would typically occur when the system state is close to capacity (the switching point between two linear 
regimes). This may cause the filter to diverge, exactly in traffic conditions that are of particular interest, as 
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near-capacity traffic is prone to breakdown to congestion, which is exactly when predictions would be 
ultimately useful. 
 

kk

k

pdf(k)

pdf(k)

q(k)

 

Figure 6: Non-linearity and non-Gaussian state esti mates 

If this is the case and one is going to neglect this non-Gaussian propagation of uncertainty in the system 
model anyway, one may wonder whether it is worth spending much calculatory effort in computing a 
theoretically elegant recursive filter like EKF with its associate cumbersome matrix inversion.  

The remainder of this section considers two possible approaches to this problem: either one turns to 
theoretically more powerful reclusive state estimators that can deal with non-linearity and arbitrary 
probability distributions of the state variables, or one turns to more pragmatic heuristics that are 
computationally less expensive than EKF. 

5.4.2 Non-linear, non-Gaussian filtering 

There are many theoretically more advanced filters than EKF that are not limited by assumptions on the 
error distributions or system/measurement models. The most common ones are: 

� Fast Kalman filter (FKF) 

� Gaussian sum filter 

� Unscented Kalman filter (UKF) 

� Particle filter (PF) 

The Fast Kalman filter (Lange, 1996) is a patented procedure that exploits the sparse, quasi-diagonal form 
of the matrices that need to be inverted to compute the Kalman gain matrix. This is claimed to accelerate 
real-time deployment on large control systems significantly. 

UKF and PF are based on the same idea: the pdf of the true state vector is discretized by a limited number 
of state vectors and their corresponding probabilities; these vectors are non-linearly transformed to yield a 
prior pdf of the state, after which the measurements are used to make a Bayesian posterior pdf. The 
difference between UKF and PF lies in the discretization of the pdf. In UKF, so-called sigma points are 
selected: a specific way of sampling aimed at producing the same mean and covariance as the true state 
vector. In PF, a random sample out of the pdf is taken, which is typically larger than the UKF sample but 
can represent any arbitrary pdf closer than the sigma points of the UKF. Examples of application of UKF to 
online traffic simulation can be found in (Mihaylova et al. 2006; R. Pueboobpaphan & T. Nakatsuji 2006; 
Rattaphol Pueboobpaphan et al. 2007; Ngoduy 2011). Examples of particle filters to traffic state estimation 
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are due to (Mihaylova & Boel 2004; Peng Cheng et al. 2006). The concept of the Gaussian sum filter is 
closely related. However, rather than sampling, the non-Gaussian distribution is decomposed as a sum of 
Gaussians. The (E)KF can then be applied to each of these components after which they are recombined 
into an estimate of the original pdf. 

The drawback of any of these non-linear solutions is that they require more computational power (e.g. the 
PF is commonly referred to as a ‘brute power’ approach). Certainly in large networks, the number of state 
variables and hence of samples may become prohibitively large. For that reason, we no further elaborate 
them in this report and refer the reader to specialized literature such as Simon (2006) and the authors 
already mentioned.  

5.4.3 Pragmatic Data Assimilation 

In this section, a limited number of pragmatic approaches to data assimilation is reported. These 
approaches are not formulated as recursive Bayesian estimators. However the structure of the procedure 
sometimes mimics the essence of such estimators, in that a prior state estimation, which accounts for all 
measurement so far as propagated by the system model, is combined with a new approximate state 
observation, albeit now in a heuristic rather than (quasi-)optimal way.  

Barlovic et al. (1999) describe an online traffic simulation model for Duisburg based on cellular automata. 
They correct the traffic states by considering artificial sources and sinks at detector station locations, 
through which they add or remove vehicles to compensate for the difference between modeled and 
observed traffic. As such, they do not really apply data assimilation, they rather locally replace simulated by 
observed traffic state, assuming perfect measurements. They justify their approach, stating that the model 
inevitably contains errors because in an urban environment vehicles may enter or leave the network 
anywhere (e.g. through parallel parking); hence the model is by far less reliable than measured data. 

Schreiter et al. (2011) initialize an online traffic flow prediction model by a traffic state estimation based on 
Adaptive Smoothing filtering (Schreiter et al., 2010). That filter does not consider any online traffic flow 
model. Rather, it smoothens and interpolates traffic states along all links, based on past measurements at 
detector stations and through traffic flow theoretical principles. Hence, the traffic state predicted in previous 
time intervals is not taken into account; rather the online traffic model is reinitiated at every measurement 
update time interval based purely on all relevant available data. 

Vortisch (2006) describes a pragmatic approach for real-time traffic state estimation in urban networks. The 
procedure is conceptually related to that of Schreiter, however, rather than applying traffic flow theoretical 
principles to propagate measured information, Vortisch uses split-rates and route fractions as a basis for 
extrapolating local flow measurements to neighbouring links in the network. The route fractions are 
obtained from an offline static planning model, or might be retrieved from online data sources like floating 
car data. As links are further away from a detector (in terms of number of intermediate nodes), the 
uncertainty of the extrapolation grows. On the other hand, multiple flow estimates are obtained for each 
link, based on extrapolation from multiple detectors. Vortisch (2006) mixes these estimates weighed with 
their respective degree of certainty, the latter being quantified in a heuristic way as an exponential decay. 
Even though the author does not suggest this, it is relatively straightforward to propose an extension where 
also previous estimates for the same link are taken into account as additional estimations to be 
appropriately weighted. Following the philosophy of the paper, the certainty of such past estimates might 
be approximated by an exponential decay in time (e.g. (double) exponential smoothing). By doing so, the 
procedure would resemble an oversimplified version of the weighting done in recursive Bayesian filters. 
Finally, Vortisch (2006) proposes a set of corrections to his basic procedure in order to account for capacity 
constraints and queue spillback.  
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6 Review of Selected Applications 
6.1 Introduction 

The following section provides a review of the applications that were selected within this Work Package. In 
addition to describing the location specifics, we describe the objectives of the system, the software that has 
been used, the collected data, whether or not the generation of multiple scenarios has been used, and 
which open issues were identified. There is also a brief overview of other potential cases that were found, 
although there is no much literature available. 
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6.2 Case: Berlin 

City/Country:    
� Berlin / Germany 

Organization:  
 

� Berlin Traffic Management Center (TMC) (or VMZ Berlin Betreibergesellschaft in 
German). This institution is divided in two departments:  

- Business to Administration division (B2A): focuses on providing services to the 
public sector by assisting local and federal authorities in the development and 
implementation of future-oriented traffic management concepts.  

- Business to Business division (B2B): is geared towards companies from a 
variety of industries.  

� The free traffic information services of VMZ are made possible by a new type of 
cooperation between public and private partners. The initial investment costs for 
the setup of VMZ were financed by the Senate Department for Urban Development 
of Berlin, whilst VMZ is responsible for the continued operation and further 
development of the traffic management system. 

Type of network, size:  
 

� Urban network - the city of Berlin (891.85 km2).  

Time line:  

 
� Trial period: date unknown.  

� It is currently operational. 
Objectives:  

 
� To provide information: Monitoring and improving mobility by providing free of 

charge traffic information to the State of Berlin and the general public. 

Software:  

 
� VISUM Online: traffic planning software developed by PTV in Germany.  

� The software is used to estimate the overall traffic state and to calculate a short-
term forecast with a time horizon of 30 minutes.  

� During the trials three demand matrices were available from traffic planning, one for 
the morning peak hours (6:00 to 9:00), one for the afternoon peak hours (15:00 to 
17:00), and one for the rest of the day. All matrices referred to normal work days, 
i.e. no further distinction was made for weekdays.  

� No further information found on current demand matrices. 

Scenario generation:  

 
� Project focuses on providing information and not on developing control strategies. 

Hence, only a single prediction (based on current state) is made. 

Data collection:  

 
� Approximately 250 detectors have been installed in Berlin for traffic monitoring. 

They are all autonomous overhead detectors supplied by solar power and 
transmitting the measured values to the control center by mobile radio (so-called 
Traffic Eyes developed by Siemens). Traffic volume and mean speed are acquired 
in 5-minute intervals. However, transmission to the control center is only triggered 
when the acquired parameters undergo major changes.  

� The dedicated detectors are complemented by inductive loop detectors on some 
motorway sections of Berlin on which section control systems are being operated. 
Particularly the southern part of the motorway ring-road is covered completely by 
inductive loops, adding up to more than 150. However they are not equally 
distributed across the network. 

� Data from the public transport systems (BVG, S-Bahn Berlin GmbH, and VBB), or 
even individual callers reporting specific situations/conditions. 

� 20 webcams.  

� Floating car data (FCD) from buses and taxis. Information about the travel speed 
on individual links of the network model is provided by these two sources. As the 
data is collected in periods of 15 minutes in order to forecast the following 15 
minutes in the same link, the covering of the network with this kind of information is 
temporally variable, depending on the availability of FCD. 
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Interventions: 

 
� All messages to be provided to the public, based on either the information received 

or the predictions made by the system, are available to the editor. He is supported 
by an automatic detection of contradictory information, to ensure that all the 
outgoing messages are consistent.  

� The users can get varied information from the website (www.vmzberlin.de). This 
includes congestion problems, construction sites, current parking situation, traffic 
forecasts, or traffic conditions via web cams. They can also use the inter-modal 
dynamic route finder to plan journeys based on up-to-the-minute traffic information 
and different transport modes.  

� Dynamic roadside information panels are used to inform the drivers of the traffic 
conditions ahead.  

� Every half an hour Radio Berlin 88.8 broadcasts the current traffic situation directly 
from the TMC. 

Open Issues: 
� The allocation of attributes (e.g., speed, flow) to the road network provided by traffic 

planning turned out to be rather problematic. There were various network variants 
for the different times of the day to model the time-dependent utilization of bus 
lanes, but there was no explicit or implicit modeling of different intersection 
capacities due to traffic signal programs changing over the day.  

� The field trials revealed that situations may arise for which the traffic volume 
approaching an intersection can be estimated fairly accurately, but the resulting 
level of service could not be determined correctly because the intersection capacity 
was not really known 

Other:  
� A field test during which an independent traffic expert compared additional 

measurements in the road network with the estimated results was carried out. The 
test was successful according to the criteria applied. 

� However, only a relatively small sample of places and times were verified during 
this test due to the large effort required for the additional measurements. Therefore, 
a statistically significant proof of the accuracy of the model has not been provided 
yet. In spite of that, the system has been operative for a while, with the traffic editor 
being the system observer. 

� More than half of the critical cases during the first year of operation were due to 
errors of system technology: 

- The editor observed inconsistencies between the measured values and the 
calculated traffic states, when using both as inputs for the next iteration of the 
estimating system.  

- The location of information in the road network during the estimation process 
was a typical source of problems because the original models used different 
geographical reference systems. 

� There were also initial errors in the calculation method:  

- The traffic editor observed implausible behavior of the calculation e.g. no 
congestion at sites at which either an incident had been detected or a traffic 
message concerning impedance had been entered into the system. 

� Chart below shows the architecture of the model: 
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Figure 7 Architecture of the Berlin model. Source: Vo rtisch (2006) – 
translated by ETH Zürich. 

References: 

 
� Vortisch, P. (2006) Model-Supported Propagation of Measured Values for Real-

Time Traffic State Estimation in Urban Road Networks, PTV AG, Karlsruhe. 
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6.3 Case: Dusseldorf 

City/Country:    
� Düsseldorf / Germany 

Organization:  
 

� Department for Traffic Management. 

Type of network, size:  
 

� Urban network - The city of Düsseldorf (217 km2). It is divided in 29,000 links, 560 
zones and 2 million of OD components.  

Time line:  

 
� Currently operational, although no forecasts are given to the public. 

Objectives:  

 

� To provide information: Estimating and predicting future traffic states (including 
travel times).  

� Control and management of the traffic system. 
Software:  

 
� The Dusseldorf Traffic Management Center is currently using PTV Traffic Platform, 

a product developed by PTV in Germany for traffic modeling and prediction. 

� PTV Traffic Platform is an ITS platform for traffic monitoring and management 
developed by PTV in Germany. In the future PTV Traffic Platform will be replaced 
by the PTV product OPTIMA.  
- It produces off-line estimations, real-time flow, and travel time prediction.  

- It produces a traffic estimation during each day-type. 

- The product was especially conceived for metropolitan areas because the 
congestion is stronger, but it can also be applied in non-urban areas.  

- Every 10 minutes it produces 1 hour simulation, including 5 complete network 
state forecasts (with 10, 20, 30, 40 and 50 minutes time horizons).  

- Predicted traffic states consist of inflows, outflows, travel times, vehicular 
densities, and queues on every link of the network.  

- The software responds to events that are automatically inserted. It also reacts 
to modified characteristics of the network (e.g. adding bottlenecks, changing 
cycle times of traffic lights, closing streets). 

Scenario generation:  

 
� The operator can simulate in real-time the effects of an event, accidental or 

generated as a control measure, by clicking into the link and inserting the type of 
event (already predefined). 

Data collection:  

 
� 560 loop detectors, which provide flows and in some cases speeds every minute.  

� Signal information (e.g., green time splits). 

� Incident information, generated by their own grid, or from third party systems. 
Interventions: 

 
� There is currently a website (http://www.duesseldorf.de/vid/) offering information to 

the public, although just real-time information, and not forecast information. 

� Nevertheless, the prediction algorithms are being implemented already, but at this 
point the results are only available to the Department of Traffic Management, and 
not to the general public. 

� It is worth noticing that even the real-time information presented in the website 
proceeds from a 10-minute prediction model (to account for data collection, 
computing, and displaying time). 

Open Issues: 
� No information has been found. 

References: 

 
� Gentile, G., L. Meschini (2011) Using dynamic assignment models for real-time 

traffic forecast on large urban networks, Proceedings for the 2nd International 
Conference on Models and Technologies for Intelligent Transportation Systems, 
Leuven, Belgium. 

� Möhl, P. (2011) Use cases of Intelligent Traffic Management, Presentation for PTV 
Traffic Mobility Logistics. 

� Möhl, P. (2011) Yellowhead Trail ITS Simulation Laboratory and Edmonton 
Showcasel, Presentation for PTV Traffic Mobility Logistics. 
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6.4 Case: Helsinki 

City/Country:    
� Helsinki / Finland  

Organization:  
 

� Project carried out by VTT Technical Research Centre of Finland, and funded by: 

- Ministry of Transport and Communications.  

- Finnish Road Administration.  

� The study was part of the Finnish Research and Development Program on ITS 
Infrastructures and Services (FITS) 2001-2004. 

Type of network, size:  
 

� Motorway - Ring Road I in the Helsinki Metropolitan Area. This road was usually 
congested during morning and evening peak hours on working days. The annual 
average daily traffic volume used to be around 85.000 vehicles and the highest 
daily traffic volumes exceeded 100.000 vehicles. For the busiest 100 hours of the 
year the traffic volume in the middle part of the road exceeded 9.600 vehicles per 
hour, and 6.000 vehicles per hour in the western and eastern parts of the road. 

� The trial started from the western part of the ring with 2 lanes in each direction. 
However, in some sections there were 3 lanes in each direction (from the Otaniemi 
junction to the main road 110, and from the main road 120 to the main road 45). 
The road had an alternating bus lane in addition to the 2 lanes per direction east of 
the main road 4.  

Time line:  

 
� Models were based on data collected during an 8-month period from January to 

August 2004.  

� The prediction performance of the models was tested during a 250-day period 
starting in January 2005 

Objectives:  

 
� To provide information: Predicting future traffic flows based on current traffic flows, 

weather and road conditions. 

Software:  

 
� SOM is a Self-Organising Map. An unsupervised neural network method useful 

when the classification of the data is unknown or when the use of this classification 
is not desired.  

� A SOM consists of neurons (processing units or map units) organized on a regular 
low-dimensional grid. Distances between the map units are measured with the 
distance of their weight vectors in grid coordinates. 

� Besides the processing of the input and the updating procedure, the model only 
needs to determine Euclidian distances to the map units and the most common 
outcome of the distribution table of the map unit with the minimum distance.  

� Even though making a SOM requires some computational power, once it is ready, 
for running the model there are not any special requirements. 

� The outcome of the model defines the traffic flow status class of the road section. 
Five traffic flow status classes are determined according to the ratio of measured 
speeds to free-flow speeds: 

- Free-flowing traffic > 90 % 

- Heavy traffic 75-90 % 

- Slow traffic 25-75 % 

- Queuing traffic 10-25 % 

- Stopped traffic < 10 % 

� Traffic conditions are classified as congested if the flow status class is slow, 
queuing or stopped. 

� Forecasts were made with a time horizon of 15 minutes on the basis of weather, 
road conditions, and travel time information.  

� The forecasts were given at 5 minute intervals for 5 minute periods, e.g. separately 
for vehicles entering the sections in the periods 0-5 min, 5-10 min, and 10-15 min. 

� The model was divided into sub-models according to the weather and road 
condition class (normal, poor, hazardous).  

� The effects of weather and road conditions on forecasts were investigated by 
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comparing the performance of the model with and without these inputs. The results 
showed that the average performance of the model was similar for both normal and 
hazardous weather and road conditions. 

Scenario generation:  

 
� Project focuses on providing information and not on developing control strategies. 

Hence, only a single prediction (based on current state) is made.  

Data collection:  

 
� Six camera stations. 

Interventions: 

 
� No information has been found. 

Open Issues: 
� The model has problems in reacting when a change in traffic patterns appears. 

Hence, it is better to reinitialize the outcome tables and restart the data collection if 
there are considerable changes in the traffic management or in the road network.  

� During the weekends most of the predictions are incorrect due to the low quantity of 
observations of congested traffic. 

Other:  
� Storage of all the samples of traffic situations is not required (an advantage of this 

model compared to others). In this study, storing all the samples would have led to 
a database of 62 million items in 5 years. By using the condensed version of the 
same history, only 10 tables of fixed size of at most 14.000 items are stored. 

� Chart below shows a schematic representation of the basic architecture of the 
model.  

 

Figure 8 Architecture of the Helsinki model. Source:  Innamaa (2009). 

References: 

 
� Innamaa, S. (2009) Short-term prediction of traffic flow status for online driver 
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6.5 Case: London 

City/Country:    
� London / United Kingdom  

Organization:  
 

� Program supported by Transport for London and the Directorate of Traffic 
Management 

Type of network, size:  
 

� Urban network – City of Westminster, South west London borough (21,5 km2).  

Time line:  

 
� Currently in testing phase. Multiple companies (PTV, TSS and IBM) are conducting 

trials, testing their specific software, in an area of London.  

Objectives:  

 
� To provide information: Estimating and predicting future traffic states (including 

travel times). 

� Control and management of the traffic system. 
Software:  

 
� PTV, TSS and IBM are all testing their specific software. This review will focus on 

the PTV trial, with the software OPTIMA. 

� OPTIMA is an ITS platform for traffic monitoring and management developed by 
PTV’s subsidiary SISTeMa in Italy: 

- It produces off-line estimations, real-time flow and travel time prediction (30 
minutes forecast). 

- It produces a traffic estimation during each day-type (based on an offline DTA 
model – VISUM) which can be later calibrated through real-time measures. 

- The product was especially conceived for metropolitan areas because the 
congestion is stronger, but it can also be applied in non-urban areas.  

- Computational times are relatively short. For the area of London being 
currently tested, a single program run (including the calculation of the current 
state, plus five forecasts (one for the do-nothing scenario, and four looking at 
other potential scenarios)) takes less than 2 minutes. 

- The outputs of the model could be used to serve information to the travelers 
through in-vehicle navigation systems, websites, or message signs located 
along the network. They can also be used to manage the traffic system by 
modifying the signal controls. 

- The software offers the possibility to manually insert events in the network. It 
also responds to events that are automatically inserted. It is possible to modify 
characteristics of the network (e.g. adding bottlenecks, changing cycle times of 
traffic lights, closing streets). 

- The user can select among different Key Performance Indicators to evaluate 
the multiple scenarios (e.g. travel time (h), average speed (km/h), total queue 
(number of vehicles), total travel distance (km)).  

Scenario generation:  

 
� Scenarios can be designed based on specific events, demand patterns, or signal 

plans. Currently they are manually selected. 

- For example, tests are being carried out where the Traffic Control Center 
designs different scenarios by proposing different combinations of signal plans. 
For that they employ pre-defined signal plans using the adaptive traffic control 
system SCOOT. SCOOT optimizes the performance of the network, in almost 
real-time, by changing traffic signal times according to the traffic conditions.  

Data collection:  

 
� Loop detectors.  

� Pre-defined signal plans (only historical information). 

Interventions: 

 
� There is nothing on-line yet, as the different software is now being tested. 
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Open Issues: 
� No information has been found. 

Other:  
� Current efforts are part of London’s long-term strategy on Intelligent Traffic 

Systems, which includes improvement of data collection capabilities, prediction 
algorithms, and decision support modeling for better management of the network. 

References: 

 
� Gardener, K. (2011) London’s Intelligent Traffic System, presentation for IMPACTS 
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Showcase, Presentation for PTV Traffic Mobility Logistics. 
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6.6 Case: Naples 

City/Country:    
� Naples / Italy 

Organization:  
 

� Work supported by:  

- The European Commission Information Society Technologies (IST) Program 
through the project RHYTHM under Grant IST-2000-29427.  

- The Italian Ministry of University and Research through the project PON-SAM 
under Grant 12897.  

- The Engineering New Staff Research Fund of Monash University (2009 and 
2010).  

Type of network, size:  
 

� Motorway - A3 freeway between Naples and Salerno in southern Italy (100 km 
stretch) 

Time line:  

 
� Trial period: May 25, 2006 (11 hours).  

� It is currently operational. 
Objectives:  

 
� To provide information: Estimating and predicting future traffic states (including 

travel times). 

� To detect incidents.  
Software:  

 
� RENAISSANCE is a generic real-time freeway network traffic surveillance tool 

based on macroscopic traffic flow modeling and extended Kalman filtering (EKF).  

� The model includes multiple fundamental diagrams to address traffic flow 
inhomogeneity.  

� The driver behavior at bifurcations is modeled in terms of turning rates.  

� The model describes traffic flow dynamics in a freeway network of any topology, 
size, and link characteristics; and simulates all kinds of traffic conditions (free flow, 
dense, and congested), as well as capacity-reducing events (e.g. incidents). 

� The model step time is set equal to 5 seconds.  

� Traffic state prediction is performed within a 10-minutes time horizon.  

� RENEAISSANCE is integrated with a dedicated graphical user interface (GUI). This 
GUI can be used for a complete presentation of real-time traffic state estimation 
results. In real-time operation, the GUI view is updated at the same time as the 
measurements are updated.  

� Each link (headed by an arrow) is displayed along with its segments, each with a 
length of approximately 500 m. The width of each segment is proportional to the 
estimated segment flow, whereas the colors of each segment correspond to the 
following estimated speed levels: 

- Green for free-flow conditions, with the segment’s space mean speed 
exceeding 90 km/h. 

- Yellow for dense flow conditions, with the segment’s space mean speed 
between 40 km/h and 90 km/h. 

- Red for congested conditions, with the segment’s space mean speed below 40 
km/h. 

� The model represents traffic flow dynamics along freeways stretches using 
aggregate traffic flow variables (e.g. flows, space mean speeds, and densities).  

� It uses the conservation equation, continuity equation, and dynamic-speed 
equation which includes a steady speed-density relationship from which the 
fundamental diagram is derived. 

Scenario generation:  

 
� Project focuses on providing information and not on developing control strategies. 

Hence, only a single prediction (based on current state) is made.  
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Data collection:  

 
- Video detectors that offer flow and speed measurements. They are installed in 

both directions with an average spacing of 4 km for the 20 km section at the 
Naples side, and an average spacing of 6.9 km for the other 27.5 km section 

- Toll stations that record the number of passing vehicles. 

- The measurements update interval is irregular but about 30 seconds on 
average. 

Interventions: 

 
� During the trials, no information was served to the users of the road. No information 

was found regarding the current procedure.  

Open Issues: 
� The number of traffic state variables to be estimated is more than 500, whereas the 

detectors and toll stations deliver measurements for 59 flow variables and 46 speed 
variables only. Hence, the majority of the state variables of interest have to be 
estimated from very limited measurement data.  

Other:  
� Floating-car data that reflect real travel times were not available during the test 

period; therefore, RENAISSANCE’s travel time prediction function was not 
evaluated. 

� Chart below shows the architecture of REINASSANCE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Architecture of the Naples model. Source:  Wang (2006). 
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6.7 Case: North Rhine-Westphalia 

City/Country:    
� North Rhine-Westphalia 

Organization:  
 

� The project was initiated by the Ministry of Transport, Energy and Spatial 
Planning of Nordrhein-Westfalen. The development and tests were done in the 
framework of a research project at the University Duisburg-Essen. 

Type of network, size:  
 

� Motorway - North Rhine-Westfalia motorway network, with an area of 34.083 
km2, approximately 18.075.000 inhabitants, and overall length of 2.173 km, 876 
on- and off-ramps and 73 highways intersections. Average traffic load of 30.000 
veh/day, with 15% trucks. 

Time line:  

 
� Trial period: 2000 - 2004.  

� It is currently operational. 
Objectives:  

 
� To provide information: Informing the road users fast and efficiently about the 

current and future traffic states. 

Software:  

 
� Designed for a microscopic simulator.  

- It divides the network into links.  

- The main links connect the junctions and highway intersections.  

- Each junction and intersection consists of multiple links, such as on-and off-
ramps or turning lanes.  

- Attributes (e.g. length, number of lanes, speed limit) are assigned to each 
link. 

- A link with its attributes is called track.  

- Each track is divided into the cells that are needed for the cellular automaton 
traffic model.  

- The junction of two tracks is called exit. It comprises all the important 
information that is needed by the simulation model.  

- The position of the loop detectors (called checkpoint) is also included in the 
digital map.  

� OLSIM (OnLine Traffic SIMulation): Based on a cellular automaton model for 
traffic flow that reproduces the characteristics of real traffic. 

- For all loop detectors three dimensional classification vectors are used, 
according to weekdays, holidays, and special days.  

- Forecast data include traffic flow of all vehicles, flow of trucks, velocity of 
passenger cars, velocity of trucks, and occupancy.  

- Jams are identified when the density is larger than 50% (criteria motived by 
empirical studies).  

- Olsim Track Data Format (OTDF) is a geographic information system that 
has been  

Scenario generation:  

 
� Project focuses on providing information and not on developing control strategies. 

Hence, only a single prediction (based on current state) is made.  
 

Data collection:  

 
� 4.480 loop detectors that collect traffic flow, velocity and occupancy data. They 

can differentiate trucks and passenger cars. 

� Secondary data: 

- Control states data from 1.800 variable message signs located across the 
network are provided every minute. 
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- Location and duration of road works. Information of short term construction 
areas daily collected. Information of permanent construction areas weekly 
collected. 

- Radio Data System / Traffic Message Chanel (RDS/TMC-messages) 
provided by the traffic warning service including current traffic information, 
traffic jams, accidents, road closures and re-routings.  

Interventions: 

 
� A public website (www.autobahn.nrw.de) is designed to offer traffic information to 

the general public. It offers a map of the motorways of the region of North Rhine-
Westphalia. Its different parts are colored according to their specific traffic state: 

- Light green for free flow  

- Dark green for dense flow  

- Yellow for stop and go traffic 

- Red for a traffic jam 

The user of the website can select whether he wants to see: 

- The current traffic state 

- 30 minute forecast 

- 60 minute forecast 
Open Issues: 

� Future research aims to incorporate the feedback of the forecasts on travel 
behavior (i.e. decisions made by drivers based on the provided information). 

Other:  
� Chart below shows the architecture of OLSIM. Note that both primary and 

secondary data are used in the forecasts. Source: Chrobok (2005). 

 

Figure 10 Architecture of the North Rhine-Westphali a model. Source: Chrobok (2005). 
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6.8 Case: Rome 

City/Country:    
� Rome / Italy 

Organization:  
 

� OCTOTelematics in collaboration with Autostrade per l’Italia Spa (leading 
Italian concessionaire for toll motorway) and ANAS (Road and Motorways 
Authority of Italy).  

Type of network, size:  
 

Motorway – Rome Ring Road (GRA-Grande Raccodro Anulare, 68,2 Km).  

� Toll-free motorway that encircles Rome with 6 lanes (3 per direction) in 97% 
of the road (on April 2008 during the trials).   

� Major traffic city traffic artery with 33 entry/exit junctions. 

� Heavy traffic most of the day (i.e. frequent delay and traffic jams due to 
accidents or queue spillbacks from the ramps or the adjacent arterial streets). 

Time line:  

 
� Trial: January 2008 – April 2008 

� Currently, only the real-time traffic state information is operational. No 
prediction service is available. 

Objectives:  

 
� To provide information: Predicting future traffic flows (15 and 30 minutes 

forecast) based on current traffic flows. 

Software:  

 
� For the short-term predictions of link travel speeds (15 and 30 minutes 

forecasts) two algorithms are tested: Pattern Matching and Artificial Neural 
Networks. They are chosen because they can take into account spatial and 
temporal average speed information simultaneously. 

� A Pattern Matching is useful when base data is already classified into 
categories. The method looks at speed data as a categorical time series, that 
is when speed data are offered over a regular time sequence as quantized 
into interval data. In the test 4 levels were defined:  

- Free for speed > 90 km/h,  

- Conditioned for speed 50- 90 km/h,  

- Slowed for speed 30-50 km/h,  

- Congested for speed < 30 km/h. 

� Artificial Neural Networks are a multilayer feedforward neural network 
combined with a backpropagation algorithm which can predict the link travel 
speeds when base data is expressed in km/h, so no categories are needed. 

Scenario generation:  

 
� Project focuses on providing information and not on developing control 

strategies. Hence, only a single prediction (based on current state) is made.  
 

Data collection:  

 
� Floating Car Data. Cars equipped with GPS receiver and GSM/GPRS 

transmitter which can collect: 

- Average travel times, speeds and direction along road links. 

- Incidents or critical situations (accident detection and reconstruction). 

- Origin-Destination traffic flow patterns. 

- Statistics on driver behavior. 

The data is periodically transmitted (on request or automatically).  

OCTOTelematics has more than 600.000 on-board units installed in Italian private 
cars (data from 2008), and expecting an increase of 30.000 units per month. This 
represented 1,7% of the total cars in Italy at the time of the trials, 2008.  

� 15.000 floating cars pass though the GRA every day, and during the pick 
hours 2000 vehicles per hour.  

� Average distance traveled by a floating car on the GRA is 10 Km. 
Interventions: 

� Offer information to the public users in the web site 
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 http://traffico.octotelematics.it/index.html, where the user can find the average 
speed estimated in the different links of the network plotted in different colors 
according with the average speed: 

- Green for speed > 90 Km/h 

- Blue for speed 70-90 Km/h 

- Yellow for speed 50-70 Km/h 

- Orange for speed 30-50 Km/h 

- Red for speed 10-30 Km/h 

- Black for speed < 10 Km/h 

� Estimated speeds are delivered, for real-traffic information, to: 

- Infomobility service providers  

- Motorway/roadway operators  

- Radio stations 

� No further information (i.e. forecasts) was provided during the trials.  
References: 

 
� De Fabritiis, C., R. Ragona and G. Valenti (2008) Traffic estimation and 

prediction based on real time floating car data, Proceedings of the 11th 
International IEEE, Conference on Intelligent Transportation Systems, 197-
203. 

6.9 Brief Overview Of Other Trials 

The following cities might also have (had) some applications, although there is no much information 
available: 

Torino:  

Background:   � 5T manages the Traffic Operation Centre in the metropolitan area of Torino, integrated 
with the Public Transport real-team Monitoring System (AVM). 5T is one of the main actors 
in the Regional Infomobility Plan. It is managing the extension of the traffic monitoring and 
information system to the whole regional territory. 5T is also coordinating the BIP project 
(Biglietto Integrato Piemonte) that will introduce a single contactless ticket for the purchase 
of any mobility service in Piemonte.  

Objectives:  � Design, develop, implement and manage ITS solutions and info-mobility services, aimed 
to achieve the following goals: 

- improve the traffic fluidity in the urban area and reduce congestions; 

- improve real time information services for the mobility; 

- improve quality and performance of monitoring services for the public transport fleets; 

- reduce air pollution caused by traffic. 
Systems:  

� Traffic Operation Centre and variable message signs panels (VMS) that provide 
information about traffic conditions and parking availability in the metropolitan area. 

� Urban traffic Control (UTC) that improves traffic conditions and provides "green light" 
priority to public transport in the city of Torino. 

� Limited traffic zone (ZTL) that controls vehicles access in the Torino city center. 

� Video-surveillance on GTT busses and at bus stops in Torino. 

� Internet trip planner that provides citizens real arrival times at bus stops, best path 
calculation, real time availability in the parking areas. 

� Public transport information services (bus stop displays, on-board displays, sms, voice). 
Website:  

 
� www.5t.torino.it/5t/en/home.jsp 

Software used:  

 
� Utopia UTC Strategies  

References:  
� www.ertico.com/assets/download/peace/session1_mizar.pdf 
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Bavaria:  

Background:   � The Free State of Bavaria cooperates with VIB (Bavarian Traffic Information Agency) that 
has established and operates a Bavarian-wide platform for travel and traffic information. 
The Free State of Bavaria provides its services "Traffic Condition", "Travel Information" 
and "Bavaria's Cycle Network" free of charge to the public. 

 

Website:  

 

� www.bayerninfo.de 
 

Software used:  

 

� VISUM.  
 

Antwerp 

� Offline trials were performed here with RENAISSANCE and VISUM. 
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7.1 Introduction 

In this last chapter, we put forward the main findings, conclusions and recommendations of the state-of-the-
art and the state-of-the-practice reviews. The recommendations can be categorized into recommendations 
for practice and for future research work. While the former focuses on issues that can be implemented 
directly by practice, the latter stresses which applied or scientific research needs to be performed with 
respect to the subject of the STEP project. In this section, we provide a short overview of the main findings 
from the state-of-the-art and the state-of-the-practice. 

7.1.1 State-of-the-art 

The state-of-the-art provided an overview of the short-term forecasting methods, decision support systems, 
and control approaches that have developed over the years. Regarding short-term forecasting, the 
following categories were distinguished: 

� Naïve methods (using the current state or historic averages) 

� Parametric model approaches using traffic flow models or simulation 

� Parametric model approaches using statistical techniques (time-series models, regression, etc.) 

� Non-parametric approaches (ANN’s, clustering techniques, etc.) 

Many of the short-term forecasting applications proposed in scientific literature focus on freeways (on the 
contrary to the practical studies, of which many also consider urban networks). Few of the applications 
discuss network wide and in mixed urban and freeway environments, while this seems to be a key aspect 
given the future applications in traffic management.   

Taking a look at the state-of-the-art in DSS (Decision Support Systems), we see again that many 
approaches have been put forward in the last few decades, covering a variety of functions. In general, 
these functions can be divided into: 

� Problem identification (detection and diagnoses) 

� Generation of possible solutions (also referred to as scenario generation in the ensuing) 

� Prediction, either pertaining to the prevailing condition or to a ‘what-if’ situation (scenarios) 

� Advising, that is, providing the operators with an advice (possibly based on the preceding functions).  

Many techniques have been proposed (knowledge-based, case-based, rule-based, model-based), none of 
which seem to ‘dominate the scene’. A key problem here is the ‘curse of dimensionality’, that in particular 
hampers application of case-based and rule-based systems. To resolve this issue, division of the network 
into sub networks has been applied in several approaches.  

Finally, the state-of-the-art has reviewed the different approaches proposed for controlling traffic in regional 
networks (urban and motorway). Note that this strongly relates to some of the functions of DSS’s described 
above.  

Also here, a distinction is made between case-based, rule-based, optimal-control and model-predictive 
control (MPC). Furthermore, centralized, hierarchal and distributed systems where considered. The 
different approaches have been compared using a number of criteria, such as the level of information 
required, the quality of the control, the complexity of the approach, the ability to consider multiple measures 

7 Conclusions and Recommendations 
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jointly, the scalability of the approach, and finally the effort to apply the method in practice. The table below 
provides and overview of the main findings (see §6.6 for more information).  

Table 5 Feature comparison for different control me thods   

Method Information Quality Complexity Integration Sc alability Effort 

MPC (centralized) Global High+ High Yes No High 

MPC (hierarchal) Compromise High High Yes Yes High 

MPC (distributed) Local High High Yes Yes High 

Optimal control Global Medium High Yes No High 

Rule-based Compromise Medium+ Low Possible Yes Medium 

Case-based Compromise Medium+ Medium Yes Yes Medium 

Anticipatory control Global High+ High Yes No High 

MFD-based Global Medium- Low Yes Yes Low 

The table clearly shows the trade-off between the different characteristics of the approaches, in particular in 
terms of effort/complexity and quality. None of the approaches is dominant in every performance aspect. 
Some, however, seem to be less appropriate candidates for traffic control applications (optimal control, 
anticipatory control and centralized MPC) because of their high complexity and difficult scalability. 

7.1.2 State-of-the-practise 

The state-of-the-practice in short-term forecasting has reviewed a number of applications throughout 
Europe, which are generally focusing on providing information to either the operators or to the road-users. 
The table below shows an overview of the reviewed applications and their key characteristics.  

Table 6 Overview of reviewed application and their key characteristics.   

Case Objective Network 
type 

Method Input data Prediction 
horizon 

Scenarios Validated 

Berlin Information 
provision 

Urban Model-based 
(VISUM on-line) 

Detectors providing 
flows and speeds, 
PT data, webcams, 
FCD from busses 
and taxis  

30 min No Limited 

Dusseldorf Information 
and control 

Urban Model-based 
(PTV Traffic 
Platform) 

Loops, signal 
information, incident 
information 

60 min Yes, user-
input 

Unknown 

Helsinki Information 
provision 

Motorway Data-driven 
(ANN’s) 

Camera’s 15 min No Partially 

London Information 
and control 

Urban Model-based 
(OPTIMA) 

Loops and pre-
defined signal plans 

30 min Yes 
(demand 
patterns, 
signal 
plans, 
events) 

No (system 
not yet 
operational) 

Naples Information 
and incident 
detection 

Motorway Model-based 
(RENAIS-
SANCE) 

Video (flow, speed), 
toll-stations 

10 min No Unknown 

North 
Rhine-
Westphalia 

Information 
provision 

Motorway Model-based 
(microscopic 
simulation using 
CA; OLSIM) 

Loop detectors, 
control settings 

30-60 min No Unknown 

Rome Information 
provision 

Motorway Data-driven 
(pattern 
matching, 
ANN’s) 

FCD (GPS) 15-30 min No Unknown 
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From the table it becomes clear that the majority of the applications focus on providing information to the 
road-users. A wide range of data is used, but the loop detector seems still the dominant data source. The 
applications generally focus on either the urban network or motorway corridors or networks; none of the 
applications has considered integrated regional networks (although this may be possible given the applied 
methodologies). Finally, we can observe that (structured) validation efforts are very few and often limited to 
ad hoc observations concerning anomalies in the state estimations and predictions.  

7.2 Conclusions 

Given the findings described in the previous section, this section presents the main conclusions for this 
review. From the state-of-the-art review, the following conclusions are emphasized: 

In order for the methods proposed in literature to be used in practice, they should be able to predict traffic 
on a larger, regional scale, rather than on (isolated) freeway stretches only. In particular for future 
applications, short-term forecast on a regional scale will become more and more important.   

An important advantage of traffic models over statistical (data-driven) non-parametric approaches is that 
they can be used for network-wide traffic predictions. Moreover, because traffic flow models capture the 
fundamental properties of traffic flow, they improve consistency between measurements, guaranteeing 
physical principles like conservation of vehicles on links and over nodes. This also renders them capable of 
modeling unforeseen situations such as incidents, which pose a problem for non-parametric models. 

Overall, the validity of the predictions has not been extensively considered (not in the state-of-the-art; not in 
the state-of-the-practice), neither for predicting prevailing conditions (i.e. the ‘do nothing scenario’), nor for 
testing the quality of the different scenario predictions (e.g. studying the impact of incidents, control 
interventions, etc.).  

Is it not easy to decide the most suitable control approach, such it strongly depends on the preferences 
regarding the development and implementation effort compared to the expected prediction and control 
quality. Nevertheless, Model Predictive Control (in particular hierarchal or distributed) or rule-based / case-
based systems seem good candidates for practical applications, where MPC offers better quality at the 
expense of considerable effort in terms of development and implementation. 

Literature provides limited information about model identification and calibration issues. More insight into 
the relation between prediction quality and control quality is required. This holds for the model parameters 
(e.g. capacity, critical density, etc.), for the OD’s (demand forecast, which are critical in resulting in accurate 
model predictions), as well as the initial state (in relation to state-estimation techniques). Chapter 7 has 
discussed some of these issues in more detail. This leads to the following sub-conclusions: 

� parameter identification for short-term forecasting needs further attention, which pertains to the 
identification techniques, identifying good performance indicators, etc.;   

� there is insufficient insight into the relation between data quality (accuracy, reliability, timeliness, 
completeness) and estimation / prediction quality; and  

� there is insufficient insight into the relation between prediction quality and control effectiveness / 
performance. 

The applicability of MPC for realistically sized networks may become computationally intractable, unless 
simplified models are used. Again, the trade-off between model complexity (and thus speed of 
computation) and prediction quality is a subject in which more insight is needed.  
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From the state-of-the-practice, the following conclusions can be made: 

� Most existing applications focus on providing information, and not on the generation and assessment of 
control strategies. Most cases do not include scenario generation algorithms. As a matter of fact, in the 
cases where multiple scenarios were tested, such scenarios were manually input into the system. 

� From personal interviews with representatives of software developing companies involved in short 
prediction modeling, most of the issues nowadays seem to be related to data collection. This includes 
lack of devices (or lack of properly working devices), and/or lack of integration protocol across different 
data collection systems (e.g.,p reports and Transportation Authorities measurements). Nevertheless, 
those issues were not mentioned in most of the papers reviewed. 

� Even though most modeling software often have the capability to deal with Floating Car Data (FCD), 
rarely any system does (largely due to the lack of data availability).  

� Since most of the applications so far have focus on providing information to users, they typically have 
relatively easy/efficient user interfaces. This includes color-coding of the links according to traffic flow 
levels, etc. 

� Current applications cover motorway links, motorway networks, and urban networks. No apparent bias 
towards a specific type of network was found. 

� Although many of the existing software can detect incidents (i.e. congestion issues), often they cannot 
distinguish between recurrent and non-recurrent congestion (i.e. type of incident). 

It should be noted that it was not easy to find information about the practical applications. Given this lack of 
public information regarding many of these applications, the focus of Work Package 2 will be useful in 
terms of the information obtained through discussions proposed to be held with individual Traffic 
Management Centres. We believe there is value in requesting an in-depth feedback regarding the 
implementation process, major milestones, open issues, etc. 

7.3 Recommendations  

This section summarises the main recommendations for practice based on the findings and conclusions in 
this Work Package. 

7.3.1 Need for short-term forecasting   

One key recommendation, which has not been explicitly considered in the review, is the need for short-term 
forecasting. From the state-of-the-art and the state-of-the-practice it becomes clear that short-term 
forecasting is technically feasible. The state-estimation and prediction techniques are there, and, although 
further work on calibration and validation is required, can be applied in practice. The benefits of using 
predictions are evident: better information for the road authority and for the road-user (predicted vs realized 
travel times), the ability to anticipate on future conditions rather than to (over-) react on the current 
situation, the ability to predict the impact of control interventions, and of events, etc.  

7.3.2 Model-based Versus Data-driven Approaches 

One of the conclusions reflects the choice for a particular method for prediction for information provision, 
for decision support and for control intervention. Based on the results of the state-of-the-art and the state-
of-the practice, model-based approaches show many advantages compared to data-driver approaches. In 
particular the ability to deal with non-recurrent conditions, changing in the demand profile, incidents, as well 
as the ability to predict the impact of control interventions, provides large benefits. It was found that data-
driver techniques (such as ANN’s, Bayesian networks, etc.) have difficulty to respond adequately to 
aforementioned changes.  
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7.3.3 Scenario-based Versus Optimization Approaches 

Choosing between scenario-based (or case-based) approaches and optimization approaches (MPC) is less 
obvious. Both approaches have their specific drawbacks and benefits. On the one hand, scenario-based 
approaches are more transparent (the users sees which scenario’s are assessed, can change the 
scenario’s, etc.) compared to optimization approaches, which are perceived as black boxes by many 
operators. Furthermore, they require (far) less effort to implement in practice. On the other hand, MPC 
yields more efficient controllers (at least in theory!) since they can optimize the utilization of the network 
given predicted network conditions.  

One aspect of importance here is the generation of the scenarios, which still in an area of research 
(although some operational systems are available, e.g. in the Regional Traffic Management Centre in 
North-Holland, Amsterdam area; (Wang et al, 2010)).  

7.3.4 Regional Approaches 

All of the approaches reviewed in this report either consider the urban network or the motorway network. 
To use the available network as efficiently as possible, an integrated approach is recommended in which 
both types of networks are considered jointly. At least some of the reviewed systems can deal with these 
networks, although in many cases, effort has to be invested in technologically joining the networks (e.g. 
integration of data collection and actuator control; concentration of activities in a single traffic management 
centre, etc.). Nevertheless, we argue that the benefits of such an integrated regional approach will be large.  

7.3.5 Monitoring Effectiveness  

Cost-effectiveness of traffic management has been debated vigorously over the past and this will probably 
continue over the years to come. It is therefore pivotal to not only invest in the implementation of traffic 
management systems (both in terms of the technology and methodology), and in keeping these systems 
functioning, it is also very important to monitor the impacts on the network performance of these systems. 
First of all, this will provide better insights into the effectiveness of traffic management in general, and the 
impact of using short-term forecast in day-to-day operational traffic management specifically. Second of all, 
it will provide data based on which the systems can be improved. It is quite surprising that in none of the 
considered applications, the impact of the system was extensively described. These insights are essential 
to convince policy makers to invest in such systems in the future.  

7.4 Research Recommendations 

Based on the review performed in this Work Package, several recommendations for research can be made 
which are relevant for the work performed within the STEP project.  

7.4.1 Scenario generation and assessment 

Scenario generation and assessment has been considered in literature at several instances. However, in 
practical applications, this aspect has not received much attention. It is therefore recommended to 
investigate further practical scenario generation schemes, based on the different examples that have been 
put forward in literature.  

An important issue here is to keep the number of scenarios within reasonable limits. The state-of-the-art 
briefly mentions approaches to do this, generally based on the use of sub networks. At the time of writing, 
one application is operational in which scenarios are constructed using sub networks (operational in the 
Verkeerscentrale North-Holland, Amsterdam; (Wang et al, 2011)). The Scenario Coordination Module 
generates (control-) scenarios per sub network using so-called building blocks. These scenarios are 
checked by the operators and could subsequently be assessed using short-term forecasting approaches. 
Other approaches are possible as well, and need to be investigated further in the future.   
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7.4.2 Model calibration and validation 

In the state-of-the-art report, the issue of calibration of the forecasting model parameters has been briefly 
discussed. Based on the results, it becomes clear that this is an issue that deserves further deliberation 
(see also the open issue in the RENAISSANCE application in chapter 2, where the lack of data complicates 
the ability to estimate the large number of parameters in the model). Some important aspects that need 
further investigation are: 

� Parameter (capacities, jam densities) and model input (OD predictions) identification methodology,  

� Data requirements (quality, quantity, semantics, etc.), and 

� Model performance assessment criteria (that is: develop measures that reflect the key flow 
characteristics that need to be capture by the model) 

During this review, we observed that the validation of the forecasting models has received little attention so 
far. We therefore recommend developing a framework for model validation (including the development of 
relevant performance assessment criteria) and benchmarking.   

7.4.3 Relation between data quality and estimation / prediction performance 

Evidently, the quality of the data will determine the quality of the estimations and predictions, and in turn 
the effectiveness of the control actions based on these estimations and predictions. However, the 
relationship between the quality of the data on the one hand, and the quality of the estimations and 
predictions is by no means clear.  

We therefore recommend to investigate this further, as well as to investigate to which extent the data 
quality can be increased by advanced state-estimation and data fusion techniques. It should be noted that 
in literature, several results regarding this subject are available in particular focusing on state estimation 
(rather than prediction).  

A key aspect of this subject, are the data quality requirements that stem from this analysis. In other words, 
which data collection system, possibly including data collection techniques that provide data with different 
data semantics, needs to be installed to provide state estimates and predictions that provide results that 
are of sufficient accuracy given the intended application. Note that such as system would be described at 
the functional level, rather than at the technical level (i.e. describe the characteristics of the data it needs to 
collect in terms of semantics, accuracy, reliability, availability). 

7.4.4 Quality of Estimation / Prediction Performance and Control Performance 

As mentioned in the preceding subsection, we lack insight into the relation between the quality of the state 
estimates and the predictions, and the eventual control decisions that are made on the bases of these 
estimations and predictions. Acquiring such insights will effectively ‘close the loop’ from data quality to 
control effectiveness, allowing monetizing the benefits of installing better data collection systems using the 
increases in effectiveness (in other words: what is the added value of an additional loop detector).   

7.4.5 Computational Complexity and Efficiency Trade-off 

Models come in various shapes and sizes. Generally speaking, the more complex the model is, the more 
accurate the predictions it provides. This increase in accuracy comes at a price: higher computational 
demand and loss of tractability.  

What is still tractable depends on the application at hand. For one-scenario predictions, complex models 
can be used. In fact, in the state-of-the-practice examples of microscopic simulation models have been put 
forward. When more scenarios are to be assessed, or applications to larger regional networks are 
foreseen, such models may yield unacceptable computation times and less complex (e.g. macroscopic) 
models may be more appropriate.  
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For model-based optimisation problems, additional issues are to be considered. First of all, MPC schemes 
often used iterative solution schemes to look for the ‘predicted optimal solution’. That is, the model will be 
run multiple times, depending on the size of the control vector and the complexity of the network. 
Furthermore, application of non-linear models or non-quadratic optimization functions strongly complicates 
finding the optimal solution. As a result, one may consider simplifying the prediction model (e.g. 
approximation by means of a linear model) in order to guarantee quick (and reliable) convergence of the 
optimization problem (making solving the problem using standard solvers possible). The extent in which 
this will affect the quality of the control strategy needs to be investigated.  

As well as computational demand, the identification issue cannot be disregarded: complex models are 
generally less parsimonious, and are hence harder to identify based on available data. Furthermore, the 
likelihood of over-fitting becomes larger, as the model becomes more complex.  

In summary, it remains to be seen what appropriate levels of predictive accuracy are available for the 
different applications of short-term prediction models, especially when we take into consideration the high 
level of noise on the input of these models (e.g. demand profiles), and the inherent uncertainty in the 
process that we are trying to describe (e.g. capacity fluctuations).  

7.4.6 Advanced Data Collection and Traffic Actuation Techniques 

In the state-of-the-practice it was observed that the use of alternative data sources is regularly discussed. 
However, we have not seen many applications that make effective use of the characteristics of these new 
data sources. It is expected that their increased use will similarly lead to an increase in the quality of the 
estimations, and predictions (e.g. by data fusion, or by using the additional information which is contained 
in the data).   

This is due to the different semantics of the data, which, when combined with more traditional data sources 
(i.e. data fusion) can lead to much better state estimates (Ou,2011). Secondly, new data sources may 
provide information, which has not been collected before (e.g. Bluetooth data providing information about 
route-choice and OD patterns). Using these data sources may substantially improve the quality of the 
estimations and the predictions, for instance by being able to observe and thus better model the impact of 
providing route guidance on the route choice given observed OD patterns. The possibilities of these new 
data sources need to be investigated further.     
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