

Seamless traffic data dissemination across urban and inter-urban networks

SEAMLESS

21/11/2012 PEB Meeting, Delft

Jörg Freudenstein

The Story

- Wake up call for traditional Traffic Management: Cooperative Systems are coming!
 - new technologies
 - new infrastructure
 - new players
 - maybe even new mindset
- Two strong and proud communities who takes care of connecting the two worlds?

Traditional Service Chain

What is spared here - for the sake of simplicity - are the Location referencing standards, which is big issue, too.

TISA - Traveller Information Services Association - January 2012

SEAMLESS – an ERA-NET ROAD project

TIS

/13/

- A lot of Test Fields for Cooperative Systems
- And yes if you scratch the surface there are efforts to connect legacy (somewhere in the Annex ...)

- Often bespoke/proprietary solutions which do not survive the end of the project
- Few (no?) use of standards
- > There is a gap!

Project 'SEAMLESS'

- "Prepare traffic data dissemination that works seamlessly across urban and inter-urban networks"
- Main topics
 - Data dissemination to in-vehicle systems
 - Link to cooperative systems
 - Linking Legacy

The Challenge

Road authorities must make best use of existing road capacity and keep track of

- Rising traffic demand
- Environmental challenges
- Economical feasibility

Road authorities have recognised the growing importance but also the huge potential of intelligent infrastructure

Challenges in distributing road authority data to travellers:

- Not all data available (with public funding?!) reaches travellers (e.g. due to administrative problems)
- Road authorities are seeking to reduce their dependency on bespoke roadside infrastructure for traffic management

The Challenge (cont.)

• Lots of money was invested

But results are poor

• New technology-channels are to come up

But even new channels have no content, if back end data exchange does not work

Lack of seamless services

Seamless Services

WP1: Analysis

- Deliverable Nr 1 "Analysis of existing research on road data dissemination to in-vehicle devices"
- Analysis of existing research
 - Summarized 42 projects in total with respect to Cooperative Systems
 - Description of standards
 - Stakeholder and their objectives
 - Description of

Use Cases

		Traffic Management Centre	RSU Operator	Content Centre	Service Centre	Control Centre	Communication Infrastructure Provider	Device Manufacturer	OEM / Automotive	
Actor –	Public	Х	Х	Х	х					L
Role Matrix	Private		(X)	х	Х	х	Х	х	Х	

WP1: Analysis (cont.)

	CVIS				
	Project Organisation	Coordinator	ERTICO		
		Partner involved	OEM, suppliers, reserach, academia		
		Contact Seamless	DrIng. Thomas Benz, DrIng. Michael Ortgiese		
		Start date	01.04.2008		
		End date	30.06.2010		
Table of project information - example CVIS	Application Use Cases	Description	Cooperative network management, Cooperative Area Routing, Flexible Lane Management, Flexible Lane Allocation, Cooperative Driver Awareness, Travellers Assistance, monitoring and guidance of dangerous goods, parking zone management, an access control to sensitive infrastructures. Cooperative Traffic Monitoring		
		Relevance for SEAMLESS	Architecture for C2X services based on a hybrid communication architecture. x UC Traffic Light x UC Journey Time		
		Category	□ Safety x Efficiency □ Environment x Urban x Interurban		

WP1: Analysis (cont.)

Business Structure	Stakeholder	x Road Operator x Automotive			
	B2C payment	x Free of Charge			
	B2B / B2A payment	x Free of Charge			
	Contracts				
Expected Benefits of the cooperation	Infrastructure	Increase the efficiency of the traffic network			
	Automotive	Benefits for the customers, e.g. reduction of travel time.			
	Service Provider				
Information Exchange	Content Semantic	Proprietary information model for the different use cases.			
	Communication Protocol	IPv6			
	Channel	□ Broadcast x Cellular x Short Range			
Architecture	Entities	x Center - Center Center - Car x Center - Infrastructure x Car - Infrastructure x Car - Car			
	Description	Decentralised architecture in a research phase; Results were influencing the ETSI station architecture.			

WP1: Analysis (cont.)

- Huge number of standardisation and business development
 activities
- Work of TISA as well as of ETSI/CEN will influence the future market
- innovation-oriented activities are mainly based on
 - COMeSAFTEY
 - (consolidation the outcomes of the research projects)
 - CVIS/SafeSpot/Coopers
 - (basic technology oriented results)
 - SimTD and Drive C2X
 - (most relevant field operation tests (FOT))
- introduction of new services must be based on sound migration strategy

WP2: Business Case Considerations

• Value and cost of urban data

AMLESS

- Value and cost of seamless services
- Data characteristics necessary for effective services
- Current Business Models and Factors Driving the Evolution
 of New Business Models

- Questions which were driving this workpackage
 - Why should road authorities who generate urban data from legacy traffic management systems seek to make it widely available?
 - How can this data be most effectively disseminated to in-vehicle devices?
 - Why is maximising usage and up-take of such in-vehicle devices by end users important?
 - What is the value of the benefits that can ultimately be realised?

WP2: Business Case (cont.)

- Advantages of new data-exchange cooperations Road Operators:
 - Direct communicate with the driver
 - Better acceptance of the measures
 - Car Manufactures:
 - improvement of vehicle safety systems
 - driver information and efficient engine control
 <u>Service Providers:</u>
 - commercial distribution of data and information
- Appropriate organizational arrangements needed for cooperation for example Mobility Data Market Place
- Focus on long period operation without losing quality
- Business structures must be in line with all technical and organizational aspects
 - Cost savings, quality improvement of information

Current Activities: WP3

- WP3: Architecture
 - Adapting existing architectures
 - Options on existing architectures are rated with respect to seamless services
 - Considering and publishing
 - the architectural assumptions that can be made
 - the architectural recommendations that the SEAMLESS project will make

Now building up a generic architecture ...

Service Providers

Road Operators

Central Layer Field Layer Mobile Layer

Road Operators

Service Providers

Road Operators

Service Providers

Road Operators

Hybrid communication

- Service Providers
 - want to deliver their information through a dedicated channel
 - want to set their services apart from other service providers
 - do not feel unhappy when controlling both ends of the channel (e.g. bespoke solution on customer side)
- Road Operators
 - are interested in complete and coincident information on customer side and
 - consistent data deliveries
 - like to use more than one channel to get a wider information spread and to compensate channel constraints

Example Traffic Light Phase Assistant

Traffic Light Phase Asst.

- Different architectures possible (direct communication via Field Layer, Central routing, ...)
- Different communication channels (digital or local broadcast, peer to peer, ...)
- Different Data Models

(type and amount of data to transfer differs a lot)

• Different channel characteristics

(Latency, Bandwidth)

• Different applications

(Real time prognosis, routing, eco-driving, ...)

All of these Points influence each other!

Service Providers

Road Operators

Example communication via Field Layer

Service Providers

Road Operators

Example communication via Service Provider

Traffic Light Phase Asst.

- Roadside ITS station is raising questions
 - Where is it placed physically?
 - Multifunctional approach (like sim^{TD}, with framework and applications) sim^{TD}, CVIS paradigm: adding elements at runtime
 - or "Plug-in" for Traffic light controller
 (intended by manufactures of traffic light controllers
 → more complex data handling inside the controller necessary)
- And even more
 - Own radio module for every application?
 - Will OCIT-O need to transport FCD data? (in fact, this is planned)
 - New controlling methods/software necessary?!
 (also think of budget approaches regarding Public Transport)

Questions are the same as for inter-urban systems!

Lots of unregulated

Example Traffic Light Phase Assistant (cont.)

Communication part of an ITS Roadside Station (left side)

Example Traffic Light Phase Assistant (cont.)

Another Possibility: Coding by vector of probabilities for "Green":

DATEX II – TPEG mapping

SEAMLESS – an ERA-NET ROAD project

DATEX II – TPEG mapping

• DATEX II message of profile for Traffic Management Plan and Navigation Service was translated to TPEG

Accident Description: Accident. ? on the 22 at 22:36 hours	Starnberg Romeim Innisch-Partenkircher	Gmunde burg o EL: Öst. (A
Accident Subtype accident Urgency Urgent This alternative route recommendation is based on a Traffic Management P	bservation Time 22-10- that Time 22-10- Sind Date 22-10- an activated by the ASFINA Bolzang Bressanone	DATEX-TPEG mapping
Cocation Envidegg Location Envidegg Location A12 - Kramsach	Direction Diffeet Distance 0 (Trrent)	Vilacha
Impact Restricted Lanes Length Affected Delay Type Select Band Select	Operational Lanes Traffic Construction Vicenza Vicenza Legnago Padova	Seripeter pri Gonge

Example Mapping to UTMC

In Summary

- Data today is still not always accessible in a satisfying way
- ⇒ Danger of reducing interest in new technologies

Project SEAMLESS is encouraging ...

- further trans-national deployments
- future developments to adopt interoperable approaches
 and giving recommendations for Road Operators on how to deal best with the new technologies:
- Where do standards not fit?
- Are there right and wrong Deployment-szenarios?

Furthermore:

- EU-wide know-how and orientations are incorporated into SEAMLESS by the Deployment Guidelines (in form of knowledge from more than 140 road operators)
- A prospective successor of European Commission mandate M/453 could be a place for SEAMLESS thoughts

Thank you for your attention

Jörg Freudenstein joerg.freudenstein@albrechtConsult.com

Tel: +49 241 500 720

On behalf of the SEAMLESS partners: Mott MacDonald, UK PTV, Germany TrafficMaster, UK AlbrechtConsult, Germany

SEAMLESS - an ERA-NET ROAD project

Collection of Links

- <u>www.albrechtConsult.com</u>
- <u>www.ptv.de</u>
- <u>www.mottmac.com</u>
- <u>www.trafficmaster.co.uk</u>
- <u>www.ffg.at</u>
- <u>www.oca-ev.org</u>
- <u>www.datex2.eu</u>
- <u>www.ocit.org</u>
- <u>www.ots2.org</u>
- <u>www.utmc.uk.com</u>
- <u>www.simtd.de</u>
- <u>www.cvisproject.org</u>

