

MIRAVEC - Modelling Infrastructure influence on RoAd Vehicle Energy Consumption

12 and 13 February 2014 ENR Energy Final Conference, Stockholm

Manfred Haider & Emma Benbow

irave

Modelling Infrastructure influence on Road Vehicle Energy Consumption

- Overview & Background
- Presentation of Work Packages
- Results

- Title: Modelling Infrastructure influence on RoAd Vehicle Energy Consumption
- Project duration: Nov 2011 Dec 2013
- Partners:

Partner	Name	Country	Roles
Coordinator	AIT	Austria	WP1, WP5 leader
1	TRL	UK	WP3 leader
2	VTI	Sweden	WP2 leader
3	ZAG	Slovenia	WP4 leader
4	CDV	Czech Republic	WP4 contribution
5	FEHRL	Belgium	Task T5.2 & T5.3 leader

• Background:

- CO₂ emissions from road transport contribute to overall GHG emissions
- Reduction efforts are essential how can National Road Authorities (NRAs) contribute?
- Improvement of road infrastructure can contribute to emission reduction

• Requirements:

- Understanding and modelling of vehicle-road interaction
- Implementation of results in asset management

road Connet WP1: Effects and Parameters

- Analysis of road infrastructure influence effects on vehicle energy consumption and associated parameters
- <u>Output:</u> Identified the most important effects contributing to road vehicle energy consumption which are governed by interaction with the infrastructure and associated parameters.

road Connet WP1: Effects and Parameters

No.	Name of effect or property	Group	NRA influence level (H,M,L)	Parameters	
1	Rolling resistance (pavement)	Α	н	C _R	-
2	Texture	А	Н	MPD, texture spectrum	
3	Longitudinal unevenness	А	Н	IRI	
4	Transversal unevenness	Α	Н	Rut depth	
5	Surface defects	А	Н	Defect area density	
6	Road strength	А	н	deflection, C _R contribution	
7	Vertical alignment (Gradient)	В	Н	Angle β or %, RF	1
8	Crossfall	В	Н	Angle γ	
9	Horizontal alignment (Curvature)	В	Н	R _{Curv} , ADC	
10	Road width and lane and carriageway layout	В	н	W _{Road}	
11	Intersections and roundabouts	В	Н	Level of service	
12	Tunnels	В	н	Level of service, $v_{average}$, v_{85}	
13	Traffic volume and composition	С	L	AADT, %	
14	Traffic flow	С	М	Level of service	
15	Traffic speed	С	М	V _{average} , V ₈₅	
16	Traffic lights, road signs, road markings and ITS measures	С	М	Level of service, v _{average} , v ₈₅	
17	Driver behaviour	С	М	driving pattern	
18	Vehicle type	D	L	vehicle type	
19	Tyre type	D	L	tyre type	
20	Air resistance	D	М	F _{air}	
21	Temperature	E	L	Т	
22	Wind	Е	L	v_{Wind}, α_{Wind}	7
23	Water	Е	М	d _{water}]′
24	Snow and ice	Е	L	d _{snow} , d _{ice}	

road Connet WP1: Effects and Parameters

Compilation of input parameters for WP2+3+4

No.	Name of effect or property	Group	NRA influence level (H,M,L)	Parameters
2	Texture	Α	Н	MPD, texture spectrum
3	Longitudinal unevenness	Α	Н	IRI
4	Transversal unevenness	Α	Н	Rut depth
7	Vertical alignment (Gradient)	В	Н	Angle β or %, RF
8	Crossfall	В	Н	Angle γ
9	Horizontal alignment (Curvature)	В	Н	R _{Curv} , ADC
10	Road width and lane and carriageway layout	В	н	W _{Road}
13	Traffic volume and composition	С	L	AADT, %
15	Traffic speed	С	М	V _{average} , V ₈₅

road Connet WP2: Modelling tools

- Evaluation of modelling tools for the effects defined in WP1
- <u>Output:</u> Evaluation of currently available tools and their capabilities, including further developments to improve their performance and scope, the possibilities for integration of different tools and the remaining gaps

road Connet WP2: Modelling tools

- Evaluation of projects and models in order to identify deficiencies and strengths
- Road infrastructure variables in the models used in IERD, ECRPD and MIRIAM

						Variable)			
Project / Model	MPD	IRI	Rut depth	Grad- ient	Cross- fall	Curve radius	Width	AADT	Traffic com- position	Traffic Speed
IERD – VETO	Х	Х		Х	Х	Х	Х	x	(x)	Х
ECRPD – VETO	Х	Х		Х	Х	Х	Х	x	(x)	Х
MIRIAM										
- VETO	Х	Х	(x)	Х	х	Х	Х	Х	(x)	х
- FTire/Dym./Mod.	Х	Х	Х	Х	Х	Х	Х			
- MOVES	(x)	(x)		Х			(x)	Х	Х	Х

 Proposal for the inclusion of additional parameters: Rolling resistance effect of RUT, Speed effect of MPD, presence of water, moisture, snow or ice, surface defects and road strength (road deterioration model)

WP2: Modelling tools

The MIRAVEC model:

road CR net

Fuel consumption function developed in MIRIAM SP2 :

 $F_{cs} = c_1 \times (1 + k_5 \times (F_r + F_{air} + d_1 \times ADC \times v^2 + d_2 \times RF + d_3 \times RF^2))^{e_1} \times v^{e_2}$

where F_{cs} is fuel consumption, F_r is rolling resistance, F_{air} is air resistance, ADC is average degree of curvature, RF is rise and fall (gradient), ν is velocity, and c_1 , k_5 , d_1 , d_2 , d_3 , e_1 and e_2 are empirical parameters.

$$F_r = (Cr_{00} + Cr_{Temp} \times (T_0 - T) + Cr_1 \times IRI \times v + Cr_2 \times MPD) \times m \times g$$

where *T* is the ambient temperature, *IRI* (International Roughness Index) is an unevenness measure and *MPD* (Mean Profile Depth) is a measure of macrotexture.

Overall fuel consumption is calculated by **aggregation** (based on traffic volume, vehicle type distribution), also taking speed effects of the level of traffic and some infrastructure features into account.

road Connet WP2: Modelling tools

Analysis of the parameters included in these models and uncertainty analysis

Results:

- A change in RF leads to the largest changes in fuel use, followed by MPD and ADC
- Relative changes in fuel use are dependent on vehicle size and road type
- A speed effect for IRI and RUT offsets fuel use savings to some extent

road Connet WP3: N

WP3: MIRAVEC tool

Objectives:

- Assess the relative importance of the effects from WP1 in different contexts and settings
- Evaluation of the potential savings in vehicle energy use achievable by NRAs actions

Output:

- Spread sheet calculation tool based on simplified models
- Case studies and scenario comparisons

road Conet

WP3: MIRAVEC tool

Input data from users

Models

Outputs from models

WP3: MIRAVEC tool

Features:

road Connet

- Spreadsheet tool for estimating vehicle energy use
- User enters traffic counts and distribution, surface condition, geometry and road layout
- The spreadsheet outputs the fuel consumption as an overall value for the route and also in graph format over the length of the route
- The spreadsheet tool allows the user to compare two scenarios to investigate the affects of changes to the route on fuel consumption

WP4: Implementation

Objectives:

road Connet

- Investigation of the current role of road vehicle energy consumption in road asset management
- Recommendations how to implement the available knowledge and/or models
- Support energy efficiency considerations in the decision making processes of NRAs

road Connet WP4: Implementation

- Identification of the current role of road vehicle energy consumption and CO2 emissions in existing systems and of opportunities for improvement (surveys)
- Derivation of recommendations

	mirave
	MIRAVEC - Modelling Infrastructure influence on RoAd Vehicle Energy Consumption
	Questionnaire on implementation in pavement/asset management
ear Madam or Sir!	
nfrastructure characteristics nitigation of the ongoing clin naintenance of the road infra	ansport represent an important part of the overall greenhouse gas emissions. The improvement of road related to fuel consumption can contribute to an overall reduction of these emissions and consequently to nate change. National Road Administrations can take a deliberate decision towards improving the design and astructure to after CO2 emissions. This decision requires both a thorough understanding of interactions and s in current pavement and asset management practice.
or the identification of possil avement/asset manageme	the MIRAVEC (Modelling Infrastructure influence on RoAd Vehicle Energy Consumption) project and is intended olilities and opportunities for implementation of vehicle energy consumption considerations into existing nt systems. The resulting information will be used to facilitate decision making regarding new investments and ucture and will help to assemble information that is important to achieve national greenhouse gas emission
/e would kindly ask you to c	ding the project please visit the web-site: <u>http://www.fehrl.org/?m=321</u> omplete the form, and thus contribute significantly to a broader view on this topic in different countries. · cooperation. Your contribution is greatly appreciated.
ours sincerely,	

	OUTPUTS OF CURRENT SYSTEMS MODELS OF ENERGY CONSUMPTION (CONT		
	MODE: SOF CURP.		
	MODELS OF ENERGY CONSUMPTION / CO2 EMISSIONS		
	CONSUMPTION / CONSUMPTION / CONSUMPTION		
	SOCIO-ECONOMIC IMPACTS IN		
	SOCIO-ECONOMIC IMPACTS AND ROLLING RESISTANCE 17. Do you consider vehicle energy consumption to have a major influence on Co2 emission influencing factors?	ns in the road sector, if it is non	Ince such
	Jeas If no, please name the other influencing parameters:		Part of B Other
1	MPLEMENTATION WITHIN EXISTING ASSET MANAGEMENT SYSTEMS		
	THE ATION WITHIN EXISTING ASSET MANAGEMENT SYSTEM	energy consumption?	
1	S your asset/pavement management system developed in-house?		
	res		
	Do you foresee any difficulties in the introduction of new parameters and rule sets for vehicle fuel consumptio	n in the existing system?	
	About CO2 emissions		
	Do you agree that reducing transport CO2 is an important and urgent issue?	hption. These are related th the traffic flow, Vehicle high influence on and are peration system?	
) yes) no	perauon system.	
2.	Do you consider vehicle energy consumption to be an important factor for an overall reduction of CO2 emissions?	id strength	
	yes no		
	Do you consider the improvement of road infrastructure to be an important contributing factor for an overall reduction of CO2 emissions		
	in road transport?		
1200	yes no		
4.	Do you already consider fuel consumption when planning construction and maintenance of infrastructure?		
	yes		
0	no		

WP4: Implementation

road Connet The MIRAVEC tool

- A spreadsheet tool was developed to describe the influence on vehicle energy use of
 - Traffic
 - Vehicle characteristics
 - Infrastructure design
- The tool enables vehicle energy use to be estimated for different situations, given appropriate input data, and displays the uncertainty associated with the estimates

road Cnet

The MIRAVEC tool

Models included in the tool

- Fuel consumption model for free flow traffic:
 - Vehicle characteristics (type, fuel used, Euro class)
 - Rolling resistance, Air resistance, Average degree of curvature, Rise and fall/gradient, Velocity
- Rolling resistance dependent on
 - Ambient temperature, IRI, MPD
- Vehicle velocity
 - Based on posted speed, vehicle type, traffic volume, gradient, IRI and rutting present
- Idle time

road Conet

The MIRAVEC tool

Tool capabilities

- Estimate vehicle fuel consumption associated with a specific route
- Explore the effects of various changes to the road infrastructure on the fuel consumption
- Implemented using a spreadsheet package
- Split into three main (colour coded) sections, further divided into separate worksheets:
 - First section (red) allows the user to enter global variables
 - Second section (blue) is used to enter the details of the road route being assessed.
 - Third section (green) provides the output data from the tool

road Conet

The MIRAVEC tool

Input data needed

The global data is entered on the sheets with red tabs and consists of:

- Traffic breakdown
- Traffic flow distribution
- Default values

Local data is provided for each length on the route (e.g. each 100m):

- Properties of road: type, number of lanes, AADT, Posted speed
- Pavement characteristics: Gradient, Curvature IRI, Rutting, MPD

Input: Traffic breakdown

	А	B	С	D	E	F	G	Н	Ι	J	K	L	М
1					2		8						
2 3 4 5													
3	-												
4													
6	Fuel consumption for user define	d vehicle clas	s equals	50	% of Euro	3 for same	vehicle type						
7													
9	Total of percentage distribution	100.0%											
10	Percentage heavy vehicles	19.0%											
11	Percentage neavy venicles	19.070											
12					Percentage	dististution				- I -		Vahiela tun	e typically u
12 13		Pre-Euro 1	Euro 1	Euro 2	Euro 3	Euro 4	Euro 5	Euro 6	User	Dre	e-Euro 1	Euro 1	Euro 2
14	Cars	Pre-Euro I	Euro I	Euro Z	EUTO 5	Euro 4	Euro 5	EULO 0	User	Pre	e-curo I	Euro I	Euro 2
15	Petrol <1400cc		5.0%								No	No	No
16	Petrol 1400-2000cc	-	5.0 %	5.0%	5.0%	5.0%	5.0%	5.0%			No	No	No
17	Petrol >2000cc	-		510 / 0	5.0%	5.0%	51070	51075			No	No	No
18	Diesel <1400cc		2.0%	2.0%	2.0%	2.0%	1.0%	1.0%			No	No	No
19	Diesel 1400-2000cc			2.0%	2.0%	2.0%	2.0%	2.0%			No	No	No
20	Diesel >2000cc										No	No	No
21	LPG	N/A		1.0%	2.0%	1.0%					N/A	No	No
22					1								
23	Tabl Commente	Petrol	Diesel	Total									
24 25	Total Car percentage	40.0%	24.0%	64.0%	J								
26	Light Coods Vahislas												
27	Light Goods Vehicles LGV N1(I) Petrol			1.00/							Mar	Ni-	Vee
28	LGV N1(I) Diesel	-		1.0% 1.0%	1.5%						No No	No No	Yes Yes
29	LGV N1(II) Petrol	-		1.0%	1.5%						No	No	Yes
30	LGV N1(II) Diesel	-		1.0%	1.5%						No	No	Yes
31	LGV N1(III) Petrol	-		1.0%	1.5 /6						No	No	Yes
32	LGV N1(III) Diesel			1.0%	1.5%						No	No	Yes
33		A STREET											
34		Petrol	Diesel	Total]								
35	Total LGV percentage	3.0%	7.5%	10.5%]								
36													
37	Rigid Heavy Goods Vehicles									_			

23

road Connet

Input: Traffic flow distribution

1	A	В	С	D	E	F	G	Н	
2									
			Hourly Flow			1.54		Percentage increase in traffic per hour releative to flow	
3	22		group (HFG)		Descrip			group 2	_
4	And and a second		1		v weekday tr			-5	
5	Week	days	2			traffic levels			9
6			3			raffic periods		20	
7	<u></u>		4			affic periods		50	
8					v weekend tr			-8	
	Week	ends	6			traffic levels		-5(
10			7			raffic periods		10	
11 12	2		8	Pea	k weekend tr	affic periods		15	
13									
14				Elow group	asignment				
	From	То	Mon-Thurs	Frid	Sat	Sun			
16	00:00	01:00	1	1	5		1		
17	01:00	02:00	1	1			5		
18	02:00	03:00	1	1	5	5 5	5		
19	03:00	04:00	1	1	5	5 5	5		
20	04:00	05:00	1	1	5	5 5			
21	05:00	06:00	1	1		5			
22 23	06:00	07:00	1	1					
23	07:00	08:00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 3 3 3 3	5				
24	08:00	10:00	2	2	6				
26	10:00	11:00	2	2	7				
27	11:00	12:00	2	2					
28	12:00	13:00	2	3	8				
29	13:00	14:00	2	3	8	6			
30	14:00	15:00	2	3	7	6	5		
31	15:00	16:00							
32	16:00	17:00	2	3	e				
33	17:00	18:00	4	4					
34	18:00	19:00	2	3	e	5 7	r		
35	19:00	20:00	1	1	e	5 6	5		
36	20:00	21:00	1	1	5	6			
37	21:00	22:00	1	1	5	5 5			
38	22:00	23:00	1	1	5				
39	23:00	00:00	1	1					
40			-						

24

road Conet

Input: Default values

	A	В	C	D	F	G	Н	I	J	L
1										
2	Typical Air Temperature		°C							
3	Typical Air Pressure	1013	mbar							
4	-									
5	Motorway: Rural									
6 7	MOLOI Way: Kula			Typical		ı г	User	Default	Typical Unc	antainty (1)
8	-	User	Default	Typical	values	+	Override	Uncertainty		
9	Parameter	Override	value	AUT	UK		(±%)	(±%)	AUT	UK
10	Number of lanes open to traffic	Ì	2.5	2	3	1 1			plicable	1
11	Posted speed limit: Car (Km/h)		121	130	112	1				
12	Posted speed limit: LGV (Km/h)		96	80	112	11				
13	Posted speed limit: HGV (Km/h)		88	80	96	1				
14	Posted speed limit: Truck and Trailer (Km/h)		88	80	96	1		not ap	plicable	
15	Posted speed limit: Bus / Coach (Km/h)		96	80	112	1				
16	Posted speed limit: Motorbike (Km/h)		121	130	112	1 1				
17	Gradient (m/km)		0.47	1.4	0	1 1		10	10)
18	Horizontal curvature (rad/km)		0.00	0.0001	0	1		20	20	
19	Road roughness (iri)		1.65	1.6	1.7	1		10	10)
20	Macro Texture (mpd)		1.03	0.55	1.5			6.7		
21	Rut Depth (mm)		4.10	3.4	4.8			7.5	7.9	5
22	AADT		52900	30000	75800	1 [not ap	plicable	
23										
24	_									
25										
26	Motorway: Urban									
27				Typical	values	1 Г	User	Default	Typical Unc	ertainty (±
28		User	Default			1	Override	Uncertainty		
29	Parameter	Override	value	AUT	UK		(±%)	(±%)	AUT	UK
80	Number of lanes open to traffic		3	3	3			not ap	plicable	
31	Posted speed limit: Car (Km/h)		96	80	112					
32	Posted speed limit: LGV (Km/h)		96	80	112					
33	Posted speed limit: HGV (Km/h)		88	80	96			not an	plicable	
	Posted speed limit: Truck and Trailer (Km/h)		88	80	96			not ap	plicable	
34										
34 35			96	80 80	<u>112</u> 112					

Input: Local data

Infrastructure characteristics

	A	В	С	M	N	0	P	Q	R	S	Т	U	V	W	X	Y
1 2	Length of route: Average daily CO2 for route:	124,000 1481,807	Tonnes									1 1	All and	$\nabla \nabla$	100	
3	Route CO2 due to idling:	5,327	Tonnes									-16		1	100	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Average daily CO2 per km:	11,950	Tonnes/km													
7	0%										10		Acres 1	Contract	10 M	
8 9													-	Concession in the local division in the loca		
10		Cond	tant Speed								100	And Personnel of States		64		
11	(1)		•									100	Para and	D. month	10	
13	100%	🗖 Idling	g								100	100		Colour III		
14												1000	- A.	125	0.000	
16																
18	Location infor	amtion				Sp	eed Limi	its (km/	'n)			Paver	nent Chacteri	istics		Traffic
		Start	End	Junction and/or traffic				Truck	Bus /	Motor-	Gradient	Horizontal	Road	Macro	Rut Depth	
	Section Reference	Chainage (m)	chainage (m)	lights?	Car	LGV	HGV	and Trailer	Coach		(m/km)	curvature (rad/km)	roughness (iri)	Texture (mpd)	(mm)	AADT
19		(,	(11)					in allor				(roo) kiny	()	(inpo)		
20	MW = motorway in Austria	0		No event	130	80	80	80	80	130	-8,28	0,036876	1,475	0,495	2,13	50803
21 22	MW	1000 2000		No event No event	130 - 130	80 80	80 80	80 80	80 80	130 130	-11,1 2.81	0,008463 0,027753	1,64 2,025	0,51 0,545	2,53 2,63	50803 50803
23	MW	3000	4000	No event	130	80	80	80	80	130 130	20,6	0,034907	1,37	0,545	2,12	50803
24 25		4000 5000		No event No event	130 130	80 80	80 80	80 80	80 80	130 130	-11,28 3	-0,06342	1,515 1,37	0,58 0,625	2,455 2,24	50803 51581
26	MW	6000	7000	No event	130	80	80	80	80	130	6,19	-0,03347	1,445	0,655	2,64	52000
27 28		7000 8000		No event No event	130 130	80 80	80 80	80 80	80 80	130 130	-21,19 -23,18	-0,05457 0,084561	1,565 1,845	0,51 0,59	2,855 2,78	52000 52000
29	MW	9000	10000	No event	130	80	80	80	80	130	11,41	-0,06008	1,75	0,54	2,745	52000
30	MW MW	10000 11000	12000	No event No event	130 130	80 80	80 80	80 80	80 80	130 130	9,38	-0,03256 -0,00713	1,835 1,8	0,52 0,635	3,39 3,285	52000 52000
32	MW	12000	13000	No event	130	80	80	80	80	130 130	-1,96	0,008881	1,61	0,61	3,235	52000
	MW MW	13000 14000		No event No event	130 130	80 80	80 80	80 80	80 80	130		0,077344 -0,03423	1,9 2,28	0,665 0,445	2,6 2,99	52000 52000
35	MW	15000	16000	No event	130	80	80	80	80	130	1,52	-0,01218	2,015	0,58	3,285	52488
	MW MW	16000 17000		No event No event	130 130	80 80	80 80	80 80	80 80	130 130	-1,55 0,6	-0,00245 -0,04684	1,455 1,135	0,5 0,55	1,795 1,645	53625 53625
38	MW	18000	19000	No event	130	80 80	80	80	80 80	130	7,19	-0,04966	1,06	0,49	1,77	53625
39	MW	19000	20000	No event	130	80	80	80	80	130	-3,36	0,07078	1,29	0,48	2,21	53625

Output data

1	А В С	D	E	F	G	Н	Ι	J	K	L	N
	All Flow groups							Selectio	n acounts for		
	2 .							Selectio	n acounts for	100.00%	of the
}											
1											
5											
6	-										
7			Average Fi	uel Consumptio	on for route in l	itres for 1 ye	ar of traffic,	for All Flow g	roups		
			Con (Dobrol)	Con (Discol)		LGV	UCV	Truck and	Due / Couch	Markaulallus	
в		All	Car (Petrol)	Car (Diesel)	LGV (Petrol)	(Diesel)	HGV	Trailer	Bus / Coach	Motorbike	
9	Route 1 Constant speed	107,180,100	30,429,400	12,649,956	2,966,414	6,681,638	######	-	7,621,612	######	
.0	Route 1 expected error	1.05%	0.82%	0.82%	1.63%	1.63%	1.63%	3.95%	1.63%	0.82%	
1	-										
2	Route 2 Constant speed	112,398,026	32,000,619	13,303,136	3,191,100	7,187,727	#####	-	7,934,119	#####	
3	Route 2 expected error	0.42%	0.32%	0.32%	0.65%	0.65%	0.65%	1.57%	0.65%	0.32%	
4											
.5											
.6	Route 1 Idling	23,962,858	8,703,353	2,209,773	888,152	2,000,499	#####	-	2,628,563	808,167	
.7	Route 2 Idling	-	-	-	-	-	-	-	-	-	
8											
.9	Route 1 Total	131,142,958	39,132,754	14,859,729	3,854,566	8,682,137	#####	-	#####	#####	
.0	Route 2 Total	112,398,026	32,000,619	13,303,136	3,191,100	7,187,727	#####	-	7,934,119	#####	
1	_										
2											
3											
4	_										
.5					tion for route i		e pass),				
6				av	erage of All Flo	w groups					
7		Car (Petrol)	Car (Diesel)	LGV (Petrol)	LGV (Diesel)	HGV	Truck and Trailer	Bus / Coach	Motorbike		
	F		1.40	2.62	2.36	7.28	0.00	6.73	1.15		
8	Route 1 Constant speed	2.01	1.40	2.02							
	Route 1 Constant speed Route 2 Constant speed	2.01 2.12	1.40	2.82	2.54	7.58	0.00	7.00	1.21		
8							0.00	7.00	1.21		
8 9							0.00	2.32	0.33		
8 9 0	Route 2 Constant speed	2.12	1.47	2.82	2.54	7.58					
8 9 0	Route 2 Constant speed	2.12 0.58	0.24	2.82 0.78	2.54 0.71	7.58	0.00	2.32	0.33		
8 9 0 1 2	Route 2 Constant speed	2.12 0.58	0.24	2.82 0.78	2.54 0.71	7.58	0.00	2.32	0.33		

Output data

Output data

Scenario comparison

Example: part of the M25 motorway (London orbital)

- Route 1: current speed limit

road CR net

- Route 2: limited to 80km/h for all vehicles

road Connet Effect of infrastructure

red: normal RR-coefficient blue: half RR-coefficient

road Conet

Results

Example results from selected scenarios

- Change in road layout:
 - Opening a 4th lane on a highly trafficked 3-lane motorway
 - CO₂ reduction between 14% and 17% due to decrease in the amount of idle time experienced
- Change in road alignment
 - Bypass to avoid going over a hill
 - Effect of greater length by far surpasses the effect of the reduction in gradients
- Change in MPD (network view)
 - Changes in MPD will only affect part of the network
 - However, emission reductions in the range of 2% are possible
- Changes in traffic volume and composition
 - Large effects possible
 - Combined analyses (e.g. introducing electric cars)
- Context is important for assessing the effectiveness of infrastructure measures, especially national fleet composition

Conclusion

Output of MIRAVEC

- the relevant effects and parameters for the infrastructure influence on road vehicle energy consumption
- their importance in different contexts
- the available modelling capabilities and
- their implementation in pavement and asset management

A research project of the cross-border funded joint research programme **"ENR CALL 2011 Energy AF: Sustainability** and Energy Efficient Management of Roads"

Thank you for your attention

Manfred Haider (AIT) Emma Benbow (TRL)

