

CEREAL CO₂ Emission Reduction in roAd Lifecycles

20 November 2012 PEB meeting Delft

Contents

- Consortium
- Objectives
- Project plan & achievements:
 - 1. Survey & interviews
 - 2. Tool assessment
 - 3. Functional requirements
 - 4. Tool development
 - 5. Dissemination
- To-do list

Project consortium

Three parties with a long history in research, development and consultancy on roads and road building materials:

Royal Haskoning DHV (NL) - Project coordinator, experience in development of predictive tools (LCA and CO2 foot printing)

KOAC-NPC (NL) – Knowledge partner on pavement behaviour and performance over life time and maintenance and rehabilitation strategies.

DRD (DK) – Specialist in research, development and testing oad Directorate to provide reliable data on road related issues. DRD developed the LCA model for materials ROAD-RES.

Website www.cereal.dk

Objectives

- A decision tool for NRA's and contractors which is harmonized on the European level
- 2. Development of a prototype software tool for computation of the CO2 emission of pavement **construction** and maintenance works.
- Proper use of the tool by providing training courses and tutorial material.

Achievements so far (1)

International **online survey & interviews** with NRA's of the funding countries to:

- Identify the general level of experience
- Inventory of existing tools.
- Identify the potential user group & the desired results
- Verification of the scope of the tool.
- Identify the functional requirements

Achievements so far (2)

Results of the **survey and interviews**:

- Many tools but very limited use.
- Current tools are too complex, not user friendly, not transparent and have too high requirements for input data.
- Data quality & availability
- Scope
- Use in the design phase of the decision making process.
- Most of the tools are not embedded (yet) in national policies.
- International expert panel has been formed (20 experts).

Achievements so far (3)

Assessment of existing tools:

- Identify structure, calculation rules and data that can be used for CEREAL
- Long list of about 50 tools (also US)
- First selection of tools: energy/CO₂ and infrastructure
- Shortlist 16 tools
- Assessment protocol:
 - 1. Background information (name, purpose, language)
 - 2. Technical questions (software, data accessibility etc.)
 - 3. User related questions (a.o. target group)

Achievements so far (3)

Conclusions on the tool assessment:

- Different purpose
- Closed and not transparent
- Require a lot of data and/or are complex in structure
- Focus on new construction
- American (US)models are more user-friendly
- European models provide useful components and material data.

Achievements so far (4)

Functional requirements for the new tool:

- Data requirements are low
- Open structure
- Best available engineering knowledge & data
- Reliable results
- Predefined maintenance scenario's
- Full life cycle of roads, but focus on maintenance
- includes the main road objects
- uses existing databases
- For projects in North-Western Europe,
- Does not include calculations on use phase

Achievements so far (5)

Tool development:

- Started in July based on the preliminary functional requirements.
- Building of the structure.
- Development of the content (Data collection & recalculation)
- Development of a testing protocol & procedure.
- Bèta version ready November/December 2012

Carbon Road Map 'Carbon Calculator for

'Carbon Calculator for road projects'

- ✓ Easy to use in default mode
- Adjustment of most defaults in the **expert mode**
- Sophisticated engineering calculations
- Makes use of existing tools and databases

Start Project Definition	Construction Data Maintenance Overview	Results
	Project definition	
Country:	The Netherlands	?
Type of project:	Building new road	?
Length (in km):	50	?
No. of lanes	2x3 lanes	?
No. of sliproads	6	?
Project life (years):	50	?
Name of project:	Project A34-1	?
Previous		Next

Screenshot of project definition (beta version)

Start Project Definition	Construction Data Maintenance Overview	Results
ROAD MAP	Project definition	
Country:	The Netherlands	?
Type of project:	Building new road	?
Length (in km):	50	?
No. of lanes	2x3 lanes	<u></u> ?
No. of sliproads	6	?
Project life (years):	50	?
Name of project:	Project A34-1	?
Previous Please select	t value: 2x1 lanes 2x2 lanes 2x3 lanes Cancel OK	Next

Start Proje Definit		Maintenance	Overview) (Results		
Corson Details							
Construction data							
	Design life (years):	10			?		
Truck traffic (%):		10			?		
Annual growth rate (%):		2			?		
Maximum speed limit for truck traffic (km/h)		80			?		
Type of subgrade:		Klei			?		
Type of pavement:		AC			?		
Type of Road foundation:		Hoogovenslakken			?		
Thickness of Road foundation (mm):		300			?		
Average daily traffic per direction		37000			?		
Previous					Next		

Screenshot of construction details (beta version)

✓ Simple to use but with detail in expert mode

Screenshot of maintenance (beta version)

Screenshot of maintenance details (beta version)

Screenshot of results (beta version)

To-do list

- 1. Finishing bèta version structure and databases.
- 2. Inclusion of end-of-life and road objects.
- 3. Testing of the bèta version (expert panel).
- 4. Preparation of the final version.
- 5. Development of user guide and courses for users.
- 6. Communication/presentation of the tool.

