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Executive summary 

The "ROAD INFRASTRUCTURE SAFETY MANAGEMENT EVALUATION TOOLS 
(RISMET)" project targets objective A (Development of evaluation tools) of the Joint Call for 
Proposals for Safety at the Heart of Road Design ("The Call"). This project aims at 
developing suitable road safety engineering evaluation tools that will support the aims of the 
Call as described in the Guide for Applicants (GfA) and furthermore those of the Directive for 
Road Infrastructure Safety Management (2008). These evaluation tools allow the easy 
identification of both unsafe (from accidents or related indicators) and potentially unsafe 
(from design and other criteria) locations in a road network. With such evaluation tools 
estimates of potential benefits at the local and the network level can be calculated and 
potential effects on aspects such as driver behaviour can be estimated. Such tools empower 
road authorities to improve their decision making and to implement (ameliorative) measures 
to improve the road safety situation on the roads. 

Since evaluation tools rely on good quality data, RISMET aims at reviewing available data 
sources for effective road infrastructure safety management in EU-countries, linked to a 
quick scan and assessment of current practices. Furthermore, RISMET aims at exploiting 
results related to the development and use of Accident Prediction Models (APMs) in road 
safety management. 

The present deliverable provides APMs for data collected at junctions from the rural road 
networks of Austria, Norway, Portugal and Holland. For the first three countries it was 
possible to obtain accident prediction models for each country individually. For Holland, 
however, and due to restrictions on the dimension of the data set, it was only possible to 
analyse these data together with the other countries data, i.e. analysing aggregated data 
sets. The data consists, per junction, of injury accident counts, type of junction, traffic control, 
speed limit and annual average daily traffics entering from the major and the minor road. The 
regression models had the injury accident frequencies as the dependent variable and the 
remaining variables as explanatory and were fitted using Bayesian statistical techniques with 
vague or non-informative prior and hyper-prior distributions. These models consisted on the 
Poisson regression model, hierarchical Poisson-Gamma and Poisson Log-Normal 
hierarchical regression model. The Poisson regression model was found to be not 
appropriate to model the junction data in any of the data sets due to not being able to capture 
variations and attributes of the data, namely the over-dispersion. The Poisson-Gamma and 
the Poisson Log-Normal models obtained similar results and in general performed equally 
well. It was found that accidents occurring at junctions in all countries depend on the 
junction‟s entering traffic volume as well as the other explanatory variables considered. This 
report provides descriptions of the several data sets, equations for the expected injury 
accident frequencies, per year, on rural road network junctions for Austria, Norway and 
Portugal and for the conjoint set of the combined data (including Dutch data) as well as 
posterior means of the expected number of accidents for minimum, mean, median and 
maximum profiles obtained by the explanatory variables and measurements of model fit 
together with the major results obtained. 
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1 Introduction 

“ERA-NET ROAD – Coordination and Implementation of Road Research in Europe” was a 
Coordination Action funded by the 6th Framework Programme of the EC. The partners in 
ERA-NET ROAD (ENR) were the United Kingdom, Finland, Netherlands, Sweden, Germany, 
Norway, Austria, Slovenia, Belgium, Hungary and Ireland (www.road-era.net). Within the 
framework of ENR this joint research programme Safety at the Heart of Road Design was 
initiated in 2008. As part of this joint programme, the project Road Infrastructure Safety 
Management Evaluation Tools (RISMET) was initiated to provide road authorities with a set 
of easy to use state of the art guidelines for applying road safety engineering management 
tools.  

This report describes the study carried out by LNEC (National Laboratory of Civil 
Engineering) as partner of the RISMET EU project in work package WP4 (Development of 
evaluation tools for the future). It consists of a statistical analysis of road accident data 
occurring at junctions of the rural road networks of four European countries; Austria, Holland, 
Norway and Portugal; as well as the analysis of aggregated data sets formed by joining 
together the data sets from each country. In the RISMET Description of Work (DoW) 
document (see Schermers and Elvik, 2009) it is stated that reports on six countries will be 
conducted. However, due to the fact that not all countries possessed complete sets of data, 
the project steering committee decided to integrate instead the results corresponding to 
countries where complete data sets were available. 

The statistical analyses described in this deliverable made use of data sets from each 
country and by employing a Bayesian statistical approach, namely hierarchical Bayesian 
regression models, developed country specific and aggregated accident prediction models 
for junctions. 

Several models have been proposed in traffic safety literature for analysing accident data. 
These models range from the standard Negative Binomial (see Lord 2006, Hauer 2002, 
Zhang et al. 2007 and Park and Lord 2008) to more complex models such as hierarchical 
Poisson-Gamma and Poisson Log-Normal (Lord and Miranda Moreno 2008) and more 
recently the Conway-Maxwell-Poisson models as described in Park and Lord (2009). 
However, the hierarchical Poisson-Gamma remains one of the most popular. 

In the analysis performed and described in this report three regression models were fitted to 
the data sets; these models included the Poisson regression model, the Poisson-Gamma 
hierarchical model and the Poisson Log-Normal hierarchical regression model. In a 
hierarchical Bayesian analysis, the parameters of the prior distributions depend in turn on 
additional parameters with their own priors who are also referred as hyper-priors, see for e.g. 
Carlin and Louis (2000), Gelman et al. (2004) and Congdon (2010). When the hyper-prior 
densities are chosen to be “vague” or “non-informative” they guarantee to play a minimal role 
in the posterior distribution. The rationale for using non-informative prior distributions is often 
said to “let the data speak for themselves”, so that inferences are unaffected by information 
external to the current data (Gelman et al. 2004). 

The regression model form in this study was chosen according to studies by, amongst 
others, Lord (2006), Miaou and Lord (2003) and Eenink et al. (2007) and is the functional 
form most favoured by transportation safety modellers for modelling crash data at 
intersections (Lord, 2006). Non-informative or vague prior and hyper-prior distributions were 
used in all models due to lack of previous information and knowledge about the models 
parameters. 

The analyses were performed using the following statistical software: R: A Language and 
Environment for Statistical Computing, developed and maintained by the R Development 
Core Team (2011) and a software developed for Bayesian analysis based on a programming 
language: WinBUGS (see Spiegelhalter at al. 2003 and Lunn et al. 2000). WinBUGS is S 
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based (S is a statistical programming language developed at the Bell Laboratories) and 
offers the basis for sophisticated programming and data manipulation with a distinctive 
Bayesian functionality. WinBUGS selects appropriate Markov chain Monte Carlo (MCMC) 
updating schemes via an built-in expert system which may be criticised as being something 
of a blackbox (Congdon, 2006). This latter software is used to generate random samples 
from the model parameters posterior distribution of a Bayesian model. The analysis also 
made use of the R package R2WinBUGS, a package for running WinBUGS from R 
developed by Sturtz et al. (2005). 

The parameter estimates of the regression models were obtained by posterior inference 
resulting from MCMC simulation methods such as Gibbs sampling and Metropolis Hastings 
algorithm (see Gelman et al. 2004 and Ntzoufras, 2009 for more details) which are 
implemented in the WinBUGS software. 

The original data set of Dutch junctions consisted of around 500 junctions of which only 
some 10 per cent had traffic volume data on all approaches. Due to the limited sample 
statistical analysis for the purpose of developing accident prediction models (see Elvik, 2010 
for more details) could not be performed. However, it was decided to utilise the certain 
intersection data from the Netherlands in the aggregated set formed by European 
roundabouts. 

In all the models considered, the dependent variable was taken to be the number of injury 
accidents (i.e. accidents with at least one injured victim) registered per junction. The 
explanatory variables were the continuous values of the logarithms of the major and minor 
annual average daily traffic volumes (AADT) and the categorical variables were the type of 
junction, number of approaches (also referred to as legs in the report), traffic control and 
speed limit of approaching roads. Three accident prediction models were developed for data 
in each of the following countries: Norway, Austria and Portugal. The aggregated data of 
these three countries were analysed taking only the major and minor AADT values. Further, 
an aggregated set formed by non-roundabout junctions from Austria, Norway and Portugal 
were analysed with the following explanatory variables: number of legs, AADT volumes and 
an indicator categorical variable denoting the country. Another set analysed comprised the 
roundabout junctions from Austria, the Netherlands and Portugal (the junctions collected in 
Norway did not comprise roundabouts). 

1.1 Background and objectives 

Safety Performance Fucntions (SPF) establish the relations between the accident frequency 
of a roadway element (during a fixed period of time) and a selection of its characteristics, 
namely those related to its geometry, hierarchy in the road network and traffic. Usually, the 
average annual daily traffic is amongst the most important explanatory variables. SPF are 
very important for measuring safety through accident and injury frequencies, as they may be 
used to estimate the long term expected number of accidents at a specific road element (for 
example, a curve or an intersection), through the empirical Bayes method (Hauer, 1997). The 
expected number of accidents may be used to compare the safety performance of a roadway 
location with the expected safety performance of comparable sites; to identify deviant sites, 
with extremely high expected number of accidents, for safety intervention; to evaluate the 
safety effect of safety interventions; and to forecast safety performance developments of 
alternative planning scenarios and preliminary design schemes. 

1.2 Structure of the report 

Chapter 2 of this report gives a description of some of the theory behind the various models 
considered and corresponding measurements of assessment. Chapter 3 describes the 
analysis performed with the Norwegian junction data set, the three models fitted and the 
overall conclusions. Chapters 4 and 5 describe the analysis performed with the Austrian and 
Portuguese data sets and present the main conclusions. Chapter 6 presents three regression 
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models developed using the aggregated data set comprising Austrian, Norwegian and 
Portuguese junctions and applying the logarithms of AADT major and minor as sole 
explanatory variables. Chapter 7 describes the analysis performed on an aggregated data 
set consisting of Norwegian, Austrian and Portuguese non-roundabout junctions. Chapter 8 
is concerned with the analysis of Austrian, Dutch and Portuguese roundabout junctions. 

The main results and conclusions obtained are presented in Chapter 9. 

2 Methodological Approach 

This Chapter provides an overview of the three Bayesian regression models that were 
considered appropriate (Lord and Miranda Moreno 2008; Elvik, 2011) to fit to the data 
registered at junctions from the rural road networks of three European countries. The chapter 
provides the theory which is adopted in the following chapters and in which the models are 
fitted to the country data. For completeness the chapter provides insight into how the model 
fit and convergence can be assessed. 

2.1 The Poisson Regression Model 

The benchmark model for (accident) count data is the Poisson distribution (Cameron and 
Trivedi, 1998). The approach taken to the analysis of count data, especially the choice of the 
regression framework depends on how the counts are assumed to arise. According to 
Cameron and Trivedi (1998) they can arise from a direct observation of a point process, 
examples of which include the number of road accidents. The standard model for count data 
is, consequently, the Poisson regression model. This regression model is derived from the 
Poisson distribution by allowing the intensity parameter   to depend on covariates 

(regressors). If the dependence is parametrically exact and involves exogenous covariates 
and no other source of stochastic variation, then one obtains the standard Poisson 
regression. A usual application of Poisson regression is to data consisting of n independent 
observations, the ith of which is (yi,xi). The scalar dependent variable, yi, is the number of 
occurrences of the event of interest, and xi is the vector of linearly independent regressors 
that are thought to determine yi. A regression model based on this distribution follows by 

conditioning the distribution of yi on a k-dimensional vector of covariates,  kiii xxx ,...,1
'  , and 

parameters  , through a continuous function ),(  ix , such that   ),(|  iii xxyE  . 

That is, yi given xi is Poisson distributed with density: 

,...2,1,0,
!

)|( 



i
i

y
i

ii y
y

e
xyf

ii 

                (2.1) 

In the log-linear version of the model the mean parameter is parameterised as: 

)exp( ' ii x ,                 (2.2) 

to ensure that 0 . Equations (2.1) and (2.2) jointly define the Poisson (log-linear) 

regression model (Cameron and Trivedi, 1998). 

2.2 Mixture Models 

The Poisson model assumes that the variances of the observations are known functions of 
the mean parameters. In practice, data of this type may be more dispersed than the Poisson 
density assumes. According to Congdon (2005) such overdispersion of excess heterogeneity 
may reflect, amongst others, a few extreme observations, variation between units of widely 
different exposures or, alternatively, it may be due to unobserved variations between 
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subjects (or frailties) i  that are not represented by the observed covariates. Without 

correction for extra variation the precision of the   parameters will be overstated: their 

credible intervals will be too narrow. 

The Poisson density may need to be modified when the observed variance exceeds the form 
assumed under the density, and this involves a mixture distribution on the Poisson mean. 

Mixture generalizations can be seen as providing greater robustness in inferences (Gelman 
et al., 2004) and as providing a density that is compatible with the data. Another motivation 
for mixture models is to pool information over units when event counts for each unit may vary 
considerably; by modelling the rates for individual units in terms of an overall hyperdensity, 
shrinkage estimates may be obtained for each unit that smoothes towards the average 
(Congdon, 2005). 

2.2.1 Poisson-Gamma Models 

The unobserved heterogeneity in a regression analysis of count data, especially if, as 
according to Congdon (2006), overdispersion is attributable to variations in proneness 
between individuals or to unknown predictors, can be represented by a multiplicative frailty 
( i ) with log-link such that: 

iiiii

ii

X

Poissony





)exp(

)(~


                 (2.3) 

Assuming a Gamma frailty model: 

),(~  Gammai ,                 (2.4) 

conjugate1 to the Poisson density, then: 

  
 )(/)exp(
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Integrating out i , as in: 

 iiiiiii dPXyPXyP  )(),|()|(  

Leads to a marginal negative binomial density for yi. 

The identifiability constraint    is frequently used. With this constraint  /1)( iVar  and 

the Negative Binomial ),( iNB  has the form: 

iy

i

i

i
iiii yyXyP )())}(1()(){()|(








 


  

With estimation by repeated sampling it is straightforward to analyse count data using either 
the Negative Binomial likelihood or the mixed Poisson-Gamma likelihood, with the latter 
approach having the benefit of providing observation specific frailties (Fahrmeir and Osana, 
2006). 

There are several alternative Gamma mixtures and generalisations of the Negative Binomial 
that can be employed. They are described in Congdon (2005, 2006 and 2010). 

2.2.2 Poisson Log-Normal Model 

                                                
1
 For definition of conjugate densities see Gelman et al., (2004). 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 27 of 159 

According to Congdon (2005) the main alternative to a model including a conjugate frailty is 
an additive random error in )( ig   so that: 

iii

ii

Xg

Poissony





 0)(

)(~
                 (2.5) 

Where i  may follow a parametric density such as the Normal. If, 

),0(~  Ni                   (2.6) 

then to a close approximation, 2)|( iii XyVar   . 

The parameter   can follow a a priori non-informative Gamma distribution. 

Equations (2.5) and (2.6) jointly define the Poisson log-Normal regression model. 

2.3 Convergence Assessment 

Bayesian inference has become closely linked to sampling-based estimation methods 
(Congdon, 2006). Both focus on the entire density of a parameter or function‟s of 
parameters. Iterative Monte Carlo methods involve repeated sampling that converges to 
sampling from the posterior distribution. Such sampling provides estimates of density 
characteristics (moments, quantiles), or of probabilities relating to the parameters (Smith and 
Gelfand, 1992). 

Monte Carlo methods encompass several algorithms that employ simulation to solve multiple 
statistical and mathematical problems; one of these algorithms is Markov chains, for more 
details see Gelman et al. (2004), Congdon (2003, 2005, 2006 and 2010) and Ntzoufras 
(2009). Monte Carlo methods are used for obtaining the sought after a posteriori values, 
namely the probability of the occurrence of a certain event. In order to obtain reliable results 
it is necessary that the algorithms, in particular the Markov chain algorithm, converge to the 
respective equilibrium distribution, i.e. its target. If convergence occurs then the obtained 
sample (simulated sample) comes from the distribution that is sought. 

Verifying the convergence of the MCMC algorithm consists in verifying the convergence of 
the model‟s parameters, or a set of parameters, if the model has many parameters, 
estimated by the algorithm. Once the algorithm has converged, the samples from the 
conditional distributions will be used to summarise the posterior distribution of the 
parameters of interest. According to the online manual of WinBUGS (see Spiegelhalter et al. 
(2003)) checking the convergence requires a lot of care, being very difficult to state that the 
chain (simulation) converges; it is only possible to diagnose when it clearly does not 
converge. Nevertheless, monitoring the convergence of the algorithm is essential for 
producing results from the posterior distribution of interest. There are many ways to monitor 
convergence. The simplest way is to monitor the Monte Carlo (MC) error, which measures 
the variability of each estimate due to simulation; this error should be low in order to calculate 
the parameter of interest with increased precision. It is sometimes suggested that the MC 
error should be less than 5% of the posterior standard deviation of a parameter (Congdon, 
2010). Monitoring autocorrelations and the plots of iterations versus the generated values 
can also be very useful. 

According to Ntzoufras (2009) all convergence diagnostics work like “alarms” that sound 
when they detect an unexpected anomaly in the MCMC output. Each diagnostic test is 
constructed to detect different problems and hence, in most cases, all diagnostic must be 
applied to ensure that convergence has been reached. Nevertheless, the diagnostics based 
on the Gelman-Rubin statistics are considered the more formal ones and have consequently 
the most reliable results. 
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2.3.1 Gelman-Rubin Diagnostics 

Gelman et al. (2004) argue that the way to best identify a non-convergence is to simulate 
several multiple chain sequences of Markov chains with differing starting values. The aim is 
to verify whether the chains have a similar behaviour. When several chains are simulated in 
parallel, each one starting from different initial values, it is possible to calculate the Gelman-
Rubin convergence diagnostic. The Gelman-Rubin diagnostic consists in obtaining, and later 
comparing, the between-sample and the within-sample variability (i.e. inter-sample and intra-
sample variability). 

WinBUGS calculates the Gelman-Rubin statistic by removing n samples from m parameters 
  and calculates the following statistics. 

Within-sample variance, W: 

  



 

m

j

n

i
j

i
j
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                 (2.7) 

Between-sample variance, B: 
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Estimated variance, Vhat( ): 

B
n

W
n

Vhat
1

)
1

1()(                   (2.9) 

The Gelman-Rubin statistic is given by Rhat: 

W

Vhat
Rhat

)(
                (2.10) 

Before attaining the convergence, W underestimates the marginal posterior variance in   

since the target distribution has not been completely explored. On the other hand, Vhat( ), 

overestimates the variance in   because the initial values are overdispersed relative to the 

target distribution. Once convergence is attained, W and Vhat( ) should be equivalent since 

the inter and intra-sampling variability should coincide. Consequently, Rhat should be 
approximately equal to 1. For more details concerning these statistics, see Ntzoufras (2009) 
and Gelman at al. (2004). 

Figure 1 shows an example of a graph obtained by the W (blue line), Vhat (green line) and 
Rhat (red line) statistics showing no evidence to doubt non-convergence of the three Markov 
chains. 

 

 

Figure 1 Example of Gelman-Rubin statistics of a simulated parameter (beta0) showing that the 
ratio of between to within variability (Rhat) is close to one (red line) and therefore 
assuming that the corresponding model has converged. 
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For more details concerning these statistics, see Ntzoufras (2009) and Gelman at al. (2004). 

2.4 Model Assessment 

Model assessment involves both the choice between competing models in terms of best fit 
and checks to ensure model adequacy. Therefore, even if one model has superior fit, it still 
needs to be checked whether predictions from the model satisfactorily reproduce the 
observed data. According to Congdon (2010) there are three main strategies to assess 
model fit and carry out model checks. They include the so-called formal approach, 
approaches based on posterior analysis of the deviance, and predictive methods based on 
samples of replicate data. The analysis performed in this report has considered the formal 
approach and the posterior analysis of deviance.  

2.4.1 Deviance Information Criterion and Effective Model Dimension 

Spiegelhalter et al. (2002) provide a penalized fit criterion called the deviance information 
criterion (DIC), it is used as a measure of model comparison and adequacy. It can be 
applicable to comparing non-nested models and also to models including random effects 
where the true model dimension is another unknown. The DIC is based on the posterior 
distribution of the deviance statistic: 

   )(log2)|(log2)|( yhypyD    

Where )|( yp  is the likelihood of data y given the parameters  , and h(y) is a standardizing 

function of the data only and so does not affect model choice (see Congdon, 2010). 

When the deviance is monitored as an extra in a MCMC run, with R iterations, it will produce 
samples {D(1),…,D(R)}. The overall fit of a model is measured by the posterior expected 
deviance obtained by averaging over the posterior density of the parameters: 

 DED y| ,                (2.11) 

While the effective model dimension, de, is estimated as: 

       DDEDDEd yye  ||               (2.12) 

Basically, the effective model dimension is the expected deviance minus the deviance at the 
posterior means of the parameters. 

The DIC is obtained as the expected deviance plus the effective model dimension: 

  ee dDdDDIC 2                (2.13) 

Therefore, using DIC, models with lower values of D  will be favoured, combined with small 
values of de, which indicate a relatively parsimonious model as stated by Congdon (2010). 

The examination of the DIC values can also be used to variable selection (see Ntzoufras, 
2009) by choosing the model with the lowest DIC value. 

According to Carlin and Louis (2009), just like other penalised likelihood criteria, DIC is not 
intended for identification of the “correct” model, but rather merely as a method of comparing 
a collection of alternative formulations (all of which may be incorrect). The same authors also 
state that the values of DIC have no intrinsic meaning; only differences in DIC across models 
are meaningful, with differences of 3 or 5 normally being thought of as the smallest that are 
interesting. 
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2.4.2 Posterior Predictive Checking 

Gelman et al. (2004) proposed a diagnostic procedure known as posterior checking that 
makes use of predictive replicates ynew or yrep. The idea behind this is the following: if the 
model fits, then replicated data generated under the model should look similar to the 
observed data. Or, as Gelman et al. (2004) also state: the observed data should look 
plausible under the posterior predictive distribution. 

One basic technique for checking the fit of a model to data is to draw simulated values from 
the posterior predictive distribution of replicated data and compare these samples to the 
observed data. Any systematic differences between the samples and the data indicate 
potential failings of the model. 

Various forms of checking function may be calculated for both new data and actual 
observations to assess whether the model satisfactorily reproduces certain important aspects 
of the actual data. For example, according to Congdon (2005) if count data are 
overdispersed, then the model should reproduce such features in the replicates (ynew or yrep) 
which are sampled from the model. 

Suppose );( yT  is the observed criterion (e.g. a ratio of observed variance to mean). Let the 

same criterion based on replicated data be denoted by );( repyT . A reference distribution is 

obtained from the joint distribution of yrep and  : 

)|()|(),( yPyPyP reprep    

And the actual value obtained by sampling set against this distribution. 

In practice, at each iteration t the criteria ),( )()( tt
repyT   and ),( )(tyT   are obtained and the 

proportion of iterations where ),( )()( tt
repyT   exceeds the other, is also obtained, namely: 

)|),(),(Pr(ˆ yyTyTp repT                 (2.14) 

This quantity is estimated as: 

 


Z

t

tttt
repT ZyTyTyTp

1

)()()()( /)),()),(),((1ˆ               (2.15) 

Where Z is the total number of iterations considered. 

According to Congdon (2005) values of Tp̂  near 0 or 1 (below 0.1 or above 0.9) indicate 

discrepancy between the observations and the model. Values relatively close to 0.5 mean 
that the actual data and the predicted (i.e. replicated) data sampled from the model are 
closely comparable in terms of the feature that the checking function summarises. 

Another model checking procedure based on replicated data is suggested by Gelfand (1996) 
and involves checking for all sample cases i=1,…,n whether observed y are within 95% 
intervals of ynew. 

3 Modelling Norwegian injury accidents 

The present Chapter describes the development and the assessment of three accident 
prediction models, obtained with the employment of statistical Bayesian techniques, for injury 
accidents occurring at junctions from the Norwegian national road network. 

The first section gives a brief description of the data. The following sections detail the model 
fitting and checking for each regression model described in sections 2.1, 2.2.1 and 2.2.2 of 
Chapter 2. 

Three regression models were fitted to the data; they include the Poisson (section 3.2), 
Poisson-Gamma (section 3.3) and Poisson Log-Normal models (section 3.4). The results 
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presented concern a period of annual frequencies even though the data was collected over a 
six years period of time. 

3.1 Norwegian Junction Data 

The data analysed was generously made available by Professor Stein Johannessen of the 
Norwegian University of Science and Technology (NTNU) in Trondheim via Professor Rune 
Elvik of the Institute of Transport Economics of the Norwegian Centre for Transport Research 
(TØI). The data set consists of measurements registered at 732 junctions on Norwegian 
national roads located in the counties of Østfold, Akerhus, Hedmark and Oppland. Traffic at 
all junctions was controlled by yield signs on the minor approaches and no junctions were 
roundabout controlled. The data was collected over a six year period from 1997 to 2002. 

The variables registered included, per junction: 

 Junction_number: The number of the junction (from 1 to 732 in Index of 
junctions) 

 Number_of_Legs: a binary (categorical) variable indicating whether the junction 
was formed by “3” or “4” legs; 

 Speed_Limit: a categorical variable referring to the speed limit allowed on the 
vicinity of the junction (it takes the values “40”, “50”, “60”, “70”, “80” and “90” 
representing km per hour) (Note: speed limit is used as a variable describing a 
certain design standard/philosophy and NOT driving behaviour) ; 

 AADTmaj: annual average daily traffic (AADT) volume on the major 
approaches; 

 AADTmin: annual average daily traffic volume on the minor approaches; 

 Accidents: the number of injury accidents occurring within 50 metres of the 
junction; 

 Killed: the number of fatalities; 

 Critical: the number of critically injured victims (life threatening injuries or 
accidents associated with permanent impairment); 

 Serious: the number of seriously injured victims (requiring in-hospital treatment); 

 Slight: the number of slightly injured victims; 
 

Before proceeding to modelling, it is useful to give some graphical descriptions of the data 
which will also help in investigating the relationship between the number of accidents 
(Accidents) and the eligible explanatory variables (AADTmaj, AADTmin, Legs and 
Speed_Limit). 

The dot plots depicted in Figure 2 consist of plots representing the number of accidents 
(Accidents), number of fatalities (Killed), number of critically injured (Critical), number of 
seriously injured (Serious) and number of slightly injured (Slight) per junction registered over 
the six year period. It can be observed that the highest number of accidents on a junction is 
9. Most junctions have zero fatalities and zero critical injured victims. There are few junctions 
where up to 19 slightly injured victims were registered. 

Another way of presenting the same data consists of the use of bar plots which can be 
observed in Figure 3 and Figure 4, for variable Accidents and for the various types of injured 
victims, respectively. 
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Figure 2 Plots of Accidents, Killed, Critical, Serious and Slight, per junction, from upper left to 
right, respectively, registered from 1997 to 2002 in Norwegian rural road network 
junctions. 

 

0 1 2 3 4 5 7 6 9

Accidents

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

 

Figure 3 Bar plot giving the frequency of the number of accidents registered from 1997 to 2002 
on Norwegian junctions on the rural road network. 
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Figure 4 Bar plots giving the frequencies of the number of fatalities and injured victims 
registered from 1997 to 2002 on Norwegian junctions on the rural road network. 

 

The two graphs depicted in Figure 5 show the AADTmaj and AADTmin values plotted 
against the number of accidents (Accidents) per junction, on the left and right panels, 
respectively. A fitted smooth regression curve, obtained with a regression function (loess) 
developed by Venables and Ripley (2002) is also included in the plots. The numbers on the 
plots next to some of the points represent the junction‟s indexes for their better identification. 
The inclusion of the smooth regression curve served the purpose of providing an overall idea 
of how the number of accidents varies with the various AADT values. Some junctions posses 
high values of either AADTmaj or AADTmin, which certainly influenced the smooth 
regression equation obtained. Nevertheless these values are not considered to be 
disproportionate and therefore it was decided not to remove the corresponding junctions from 
the data set. 

Most accidents at Norwegian rural junctions occur at values of AADTmaj varying between 
133 and 12000 vehicles per day (Figure 5 and Table 1) and AADTmin values of between 7 
and 3000 vehilces per day. The number of accidents seem to stabilise for values of 
AADTmin greater than 2000 (right panel on Figure 5), however, the smooth regression line 
on the left panel decreases due to an occurrence of one accident at junction indexed as 43 
which has an AADTmaj value greater than 30000. 
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Figure 5 The number of accidents per junction in the Norwegian data set against AADTmaj and 
AADTmin, and corresponding polynomial fits, on the left and right panels, 
respectively. 

 

The bar plots in Figure 6 show the number of junctions with 3 and 4 legs (left panel) and the 
number of junctions grouped by speed limit (right panel). 

The left panel in Figure 7 (box plot) indicates that the distribution of the two groups of 
variable Legs differ as far as the degree of skewness (to the right) is concerned. The median 
of Accidents also differs according with the number of legs, with junctions with 4 legs having 
higher median (of accident counts) than junctions with 3 legs (with median equal to zero). 
Consequently, the distribution of the number of accidents seems to differ whether the 
junction is formed by 3 or 4 legs. 
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Figure 6 Bar plots giving the frequencies of the number of junctions per categories of variables 
Number_of_Legs and Speed_Limit, registered from 1997 to 2002 at Norwegian 
junctions on the rural road network. 

 

The plot on the right panel in Figure 7 shows the boxplots of the number of accidents per 
speed limit. It can be observed that the medians for the number of accidents are similar for 
junctions with various speed limits apart from those with speed limit of 70km/h which have a 
higher value for the median of accidents when compared with the others. 
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Figure 7 Box plots of the number of accidents in the Norwegian junctions by group for 
Number_of_Legs and Speed_Limit, on the left and right panels, respectively. 

 

Table 1 contains descriptive statistics for all the variables registered from 1997 to 2002 at 
Norwegian junctions on rural roads. 

 

Table 1 Summary statistics for the variables registered on Norwegian junctions from 1997 to 
2002. 

Variables minimum mean standard 
deviation 

median maximum 

AADTmaj 133 3615.0 3600.1 2266 32311 

AADTmin 7 646.7 1011.9 275 9332 

Number_of_Legs 3 - - - 4 

Speed_Limit 40 - - - 90 

Accidents 0 0.583 1.090 0 9 

Killed 0 0.022 0.164 0 2 

Critical 0 0.012 0.122 0 2 

Serious 0 0.858 0.319 0 4 

Slight 0 0.893 1.848 0 20 

3.2 The Poisson Regression Model 

The Poisson regression model as given by Equations 2.1 and 2.2 was fit to the data where 
the number of accidents (Accidents) was considered to be the dependent variable and the 
logarithms of AADTmaj and AADTmin, as well as the categorical variables Legs and 
Speed_Limit, were taken as explanatory, as shown on Equation 3.1 (as in Lord 2006 and 
Elvik 2010) and corresponding to Equation 2.2. 

ln( î ) = β0 + β1ln(AADTmaji) + β2ln(AADTmini) + β3Number_of_Legsi + β4Speed_Limiti    (3.1) 

The parameter î  gives the expected number of accidents for a period of one year. The   

parameters were assigned Normal a priori distributions with mean zero and precision 
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(inverse of the variance) equal to 0.0001. 

The following baseline, or reference, categories were used for the categorical variables: 

Number_of_Legs = 3; 

Speed_Limit = 60km/h. 

The MCMC algorithm comprised three chains and was run for 35000 iterations with 33000 
iterations considered as burn-in with a thinning rate equal to 7. The final sample had 
dimension 1002. In the burn-in period a chosen number of iterations are eliminated from the 
sample in order to avoid the influence of the initial values, the thinning rate equal to 7 means 
that the first generated values in every batch of 7 iterations was kept. 

From the observation of the graphs obtained from the Gelman-Rubin statistics (see Chapter 
2) for the estimates of the   parameters depicted in Figure 8 it can be seen that the Rhat 

statistic (red line in the plot and given by Equation 2.10) converges to 1 and that both W 
(blue line) and Vhat (green line) stabilise as the number of iterations increase. These indicate 
that there seems to be convergence of the iterative simulation. 
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Figure 8 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson regression model fitted to the 
Norwegian junction accident data. 

 

The point estimates for the model thus obtained are given in Table 2. These point estimates 
are provided by the posterior means obtained for the distributions of each unknown 
parameter. Table 2 shows also the standard deviations, Monte Carlo errors and 95% credible 
intervals for the estimates of the estimates of the   parameters shown in Equation 3.1. 
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Table 2 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson regression model was fitted to 
the Norwegian accident data. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -10.860 1.308 1.765E-01 -13.960 -8.915 

β1 (ln (AADTmaj)) 0.706 0.072 9.088E-03 0.586 0.862 

β2 (ln(AADTmin)) 0.251 0.044 3.825E-03 0.166 0.331 

β3 (Legs=‟4‟) 0.776 0.129 5.357E-03 0.508 1.014 

β4 (Speed_Limit=‟40‟) 0.608 0.927 1.218E-02 -0.725 2.576 

β4 (Speed_Limit=‟50‟) 1.146 0.927 1.228E-02 -0.136 3.119 

β4 (Speed_Limit=‟70‟) 1.572 0.929 1.226E-02 0.253 3.520 

β4 (Speed_Limit=‟80‟) 1.229 0.944 1.251E-02 -0.085 3.226 

β4 (Speed_Limit=‟90‟) 0.863 1.036 1.274E-02 -0.723 3.152 

 

The 95% credible intervals for the estimates of the non-categorical independent covariates 
do not include zero, indicating that these variables (ln(AADTmaj) and ln(AADTmin)) have a 
relevant effect on the prediction of the number of accidents (see Congdon (2005) and 
Ntzoufras (2009)). 

The posterior densities of the parameter estimates are shown in Figure 9. These densities 
are functions that describe the relative likelihood (in the y axis) of the parameter estimates 
(considered here as a random variable) to occur at the given points of the x axis. The 
observation of Figure 9 indicates that the mean values of all the densities have moved away 
from zero (the mean value assumed a priori), even if the 95% credible interval (see also 
Table 2) covered zero in some cases. 
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Figure 9 Posterior densities of the coefficients corresponding to the beta parameters obtained 
after the Poisson regression model was fitted to the Norwegian accident data. 

 

The interpretation of the regression coefficients takes into account the fact that they can be 
exponentiated and treated as multiplicative effects (see Gelman and Hill, 2007 and 
Ntzoufras, 2009). As an example, it can be stated that the coefficient of ln(AADTmaji), in 
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equation 3.1, is the expected difference in the number of injury accidents (on the logarithmic 
scale) for each additional unitary increase in ln(AADTmaj). Thus, the expected multiplicative 
increase is the exponential of that coefficient. As with regression models in general, each 
coefficient is interpreted as a comparison in which one predictor differs by one unit while all 
the other predictors remain at the same level, which is not necessarily the most appropriate 
assumption when extending the model to new settings (Gelman and Hill, 2007). 

Examination of the coefficient estimates in Table 2 suggests that the expected numbers of 
accidents on four leg junctions are a posteriori expected to have approximately 117% more 
accidents than a three leg junction with the same AADTmaj and AADTmin values and speed 
limit. A unitary increase in either ln(AADTmaj) or ln(AADTmin) increases the expected 
number of injury accidents by approximately 103% or 29%, respectively, provided the 
remaining explanatory variables have constant values. As an example, suppose a junction 
has a value of AADTmaj equal to 13000, ln(AADTmaj) is then approximately 9.473. The 
same junction with 10.473 for ln(AADTmaj) (corresponding to 35348 AADTmaj) is expected 
to increase the number of injury accidents by approximately 103%. 

A junction with a speed limit of 50km/h is a posteriori expected to have around 215% more 
accidents than a junction with a 60km/h speed limit with the same AADT values and number 
of legs (Table 3). 

The expected number of accidents for a period of one year can be obtained by solving the 
equations shown in Table 3, for the several categories of variables Legs and Speed_Limit. 

 

Table 3 Expected numbers of accidents for Norwegian junctions, for a one year period, 
obtained by a Poisson regression model, for a baseline/reference of 
Number_of_Legs=‟3‟ and Speed_Limit=‟60‟. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Speed_Limit 

„40‟ 

„50‟ 

„60‟ 

„70‟ 

„80‟ 

„90‟ 

 

251.0705.05 min10523.3ˆ iii AADTAADTmaj  
 

251.0705.05 min10036.6ˆ iii AADTAADTmaj  
 

251.0705.05 min10919.1ˆ iii AADTAADTmaj  
 

251.0705.05 min10245.9ˆ iii AADTAADTmaj  
 

251.0705.05 min10558.6ˆ iii AADTAADTmaj  
 

251.0705.05 min10548.4ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Speed_Limit 

„40‟ 

„50‟ 

„60‟ 

„70‟ 

„80‟ 

„90‟ 

 

251.0705.05 min10652.7ˆ iii AADTAADTmaj  
 

251.0705.04 min10311.1ˆ iii AADTAADTmaj  
 

251.0705.05 min10168.4ˆ iii AADTAADTmaj  
 

251.0705.04 min10008.2ˆ iii AADTAADTmaj  
 

251.0705.04 min10424.1ˆ iii AADTAADTmaj  
 

251.0705.05 min10880.9ˆ iii AADTAADTmaj  
 

 

From observation of Table 3 it can be concluded that from the Poisson regression model the 
expected number of accidents is greater on 4 leg junctions than on 3 leg ones. It can also be 
seen that, for a constant value of the variable Number_of_Legs, the expected number of 
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accidents increases with increasing speed limit, up to junctions where the speed limits is 
70km/h, then there is a slight decrease for junctions with 80 and 90km/h speed limits. This 
shows that junctions on roads witjh speed limits of 80 and 90km/h may have better geometric 
design than junctions on roads with lower speed limits. 

3.2.1 Model Checking 

According to Gelman et al. (2004) the model fits the data when replicated data generated 
under the model looks similar to the observed data. 

Figure 10 contains twenty histograms, with the histogram on the left upper corner (in grey) 
representing the frequency of the number of observed accidents on each of the 732 junctions 
(the same as the histogram depicted in Figure 3). The remaining nineteen histograms in 
Figure 10 were obtained from replicated data (yrep) from the posterior predictive distribution 
(each denoted Figure 10 by Acc.rep). The comparison of the nineteen histograms with the 
histogram of the observed data shows that most replicates can be considered to be 
representative of the observed number of accidents. The number of replicated data sets in 
Figure 10 (i.e. nineteen) was chosen according to examples given by Gelman et al. (2004). 
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Figure 10 Histogram of the observed number of accidents in Norwegian junctions (left upper 
corner in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson regression model. 

 

Figure 11 shows dot plots, instead of histograms as in Figure 10, of a further batch of 19 
replicated data sets formed by the number of accidents per junction. An identical conclusion 
can be made by observation of the dot plots, as the dot plot of the observed data looks 
plausible under the posterior predictive distribution. The x axis of the dot plots correspond to 
the junction‟s indexes and the y axis to the number of accidents. 

From the interpretation of both figures it can be stated that the data replicated by the model 
seems to be consistent with the observed data. 
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Figure 11 Dot plot of the observed number of accidents in Norwegian junctions (left upper 
corner in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson regression model. 
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Figure 12 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures. The discrepancy measures T are: maximum, sum, mean and standard 
deviation (sd). The p is the estimated probability that the measures obtained by the 
posterior predictive distributions are greater than the ones obtained by the observed 
data. 
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Five discrepancy measures were taken into account in order to measure the discrepancy 
between the model and the data as explained in section 2.4.2 in Chapter 2. The measures 
referring to the maximum, sum, mean and standard deviation are represented in Figure 12. 

By observation of Figure 12 it can be seen that the Poisson regression model captures the 
variations corresponding to the four measures (estimated probabilities with values lying 
between 0.1 and 0.9). However, for T=max and T=sd, the estimated probabilities are far from 
the ideal 0.5 value (see section 2.4.2). 

The effect of the measure of discrepancy suggested by Congdon (2005) to check whether 
the overdispersion of the data is taken into account by the model (variance over the mean) is 
displayed in Figure 13. 
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Figure 13 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distributions of the same measure. The p is the estimated 
probability that the measure obtained by the posterior predictive distribution is 
greater than the one obtained by the observed data. 

 

The estimated probability that the ratio of the variance to the mean in the replicated data is 
greater than the same ratio calculated from the observed data is equal to 0.236, which is a 
small value indicating that there is some overdispersion that is not being replicated by the 
model. However, it still belongs within the suggested limits proposed by Congdon (2005). 

This model produces an average deviance, D , of 1296.270 and an effective model 
dimension, de, of 9.928, giving a DIC (see Equation 2.13 in section 2.4.1 of Chapter 2) of 
1306.200. These values are used for model comparison which is discussed in section 3.5. 

3.3 Poisson-Gamma hierarchical regression model 

The Poisson-Gamma hierarchical regression model was fit to the Norwegian junction data 
using Equations 2.3 and 2.4 where    and ),(~ aaGamma  with a=0.1. The expression 

given by Equation 3.1 was applied and the   parameters were given a priori Normal 

distributions with mean 0 and precision 0.0001 (variance is equal to the inverse of the 
precision). 

The MCMC algorithm comprised 3 chains and was run for 35000 iterations with 33000 burn-
in iterations with a thinning rate of 7. The results thus described were based on a sample 
with dimension equal to 1002. 
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From the observations of the Gelman-Rubin plots for the   parameters in Figure 14 it can be 

concluded that in some parameters the corresponding Rhat statistic (the red line) does not 
seem to converge to 1, which raises some doubts as to the convergence of the 
corresponding distributions. 
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Figure 14 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson-Gamma regression model fitted to the 
Norwegian junction accident data. 

 

The point estimates for the model obtained are given in Table 4. The impact of both variables 
ln(AADTmaj) and ln(AADTmin) remains significant with 95% credible intervals of (0.651, 
0.796) and (0.203, 0.395), respectively. 

 

Table 4 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson-Gamma regression model was 
fitted to the Norwegian accident data using 3 leg junctions with a 60km/h speed limit 
as baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -10.130 0.283 3.903E-02 -10.800 -9.771 

β1 (ln(AADTmaj)) 0.727 0.039 4.942E-03 0.651 0.796 

β2 (ln(AADTmin)) 0.296 0.051 6.458E-03 0.203 0.395 

β3 (Legs=‟4‟) 0.844 0.131 1.723E-02 0.545 1.085 

β4 (Speed_Limit=‟40‟) -1.317 0.455 6.231E-02 -2.326 -0.673 

β4 (Speed_Limit=‟50‟) -0.618 0.168 2.255E-02 -0.974 -0.368 

β4 (Speed_Limit=‟70‟) 0.381 0.150 2.012E-02 0.114 0.690 

β4 (Speed_Limit=‟80‟) -5.913x10-4 0.097 1.229E-02 -0.180 0.193 

β4 (Speed_Limit=‟90‟) -0.075 0.510 7.064E-02 -1.089. 0.727 

 

From examination of the means in Table 4 (column mean) it can be stated that, according to 
the model, every unitary increase in ln(AADTmaj) increases the expected number of 
accidents by 107%, (when the other variables remain constant). On the other hand, an 
increase in ln(AADTmin) increases the expected number of accidents by 34%. See example 
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on section 3.2. 

A 4-leg junction is a posteriori expected to have approximately 133% more accidents than a 
3-leg junction with the same ln(AADTmaj), ln(AADTmin) and speed limit. 

A junction with a 50km/h speed limit is a posteriori expected to have approximately 46% less 
accidents than a junction with a 60km/h speed limit and the same values of ln(AADTmaj), 
ln(AADTmin) and number of legs. However, a 70km/h speed limit junction is a posteriori 
expected to have 46% more accidents than a 60km/h speed limit junction with the same 
values of AADT and number of legs. 

Junctions with 80km/h and 90km/h are a posteriori expected to have approximately less 
0.06% and 7%, respectively, expected number of injury accidents than 60km/h junctions (all 
the other variables remaining constant). This shows that, according to this particular Poisson-
Gamma model, junctions with 60km/h and 80km/h have approximately the same number of 
expected injury accidents. 

Figure 15 shows the posterior densities for the   coefficient estimates obtained by the 

Poisson-Gamma model. The posterior densities of the coefficient estimates seemed to have 
drifted away from the prior distributions considered, i.e. Normal distributions with mean equal 
to zero and variance 10000. 
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Figure 15 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after the Poisson-Gamma regression model was fitted to the Norwegian data 
set. 

 

The expected number of accidents, for a one year period, can be obtained by the equations 
displayed in Table 5 for junctions with 3 and 4 legs and different speed limits. 
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Table 5 Expected number of accidents per year for Norwegian junctions, obtained by a 
Poisson-Gamma regression model using 3 leg junctions with a 60km/h speed limit as 
baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Speed_Limit 

„40‟ 

„50‟ 

„60‟ 

„70‟ 

„80‟ 

„90‟ 

 

296.0727.05 min10067.1ˆ iii AADTAADTmaj  
 

296.0727.05 min10146.2ˆ iii AADTAADTmaj  
 

296.0727.05 min10682.3ˆ iii AADTAADTmaj  
 

296.0727.05 min10827.5ˆ iii AADTAADTmaj    
296.0727.05 min10980.3ˆ iii AADTAADTmaj    
296.0727.05 min10695.3ˆ iii AADTAADTmaj    

Number_of_Legs=‟4‟  

Speed_Limit 

„40‟ 

„50‟ 

„60‟ 

„70‟ 

„80‟ 

„90‟ 

 

296.0727.05 min10480.2ˆ iii AADTAADTmaj  
 

296.0727.05 min10990.4ˆ iii AADTAADTmaj  
 

296.0727.05 min10260.9ˆ iii AADTAADTmaj  
 

296.0727.04 min10355.1ˆ iii AADTAADTmaj  
 

296.0727.05 min10254.9ˆ iii AADTAADTmaj  
 

296.0727.05 min10593.8ˆ iii AADTAADTmaj  
 

 

From observation of Table 5 it can be stated that, in general, 3-leg junctions have less 
expected numbers of accidents than 4-leg ones, when taking into account the same values 
of AADTmaj and AADTmin for 3 and 4-leg junctions. The expected number of accidents is 
lower on junctions with a 50km/h speed limit. As the speed limit increases also increases the 
expected number of accidents reaching the higher values at junctions with 70km/h speed 
limit. 

Within each type of Number_of_Legs the highest speed limits (i.e. 80 and 90km/h) have 
lower expected number of injury accidents than the 70km/h junctions with junctions with 
60km/h having identical expected number of accidents to the 80 and 90km/h speed limit 
junctions. 

Speed limits on Norwegian intersections are established on approaching roads‟ geometry 
and traffic characteristics. 

3.3.1 Model Checking 

Figure 16 contains the histograms of the replicated data together with the histogram of the 
observed data. The histograms show that the observed data looks plausible under the 
posterior predictive distribution represented by the histograms of the replicated data. 
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Figure 16 Histogram of the observed number of accidents in Norwegian junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson-Gamma regression model. 

 

Figure 17 shows dot plots instead of histograms for a further set of 19 examples. An identical 
conclusion is obtained after examination of this figure as that of Figure 16. 

The results obtained by the replicated data for the discrepancy measures considered, 
together with the observed values are plotted on the four graphs displayed in Figure 18. 
Since all the observed values fall inside the histograms (of replicated data) and the estimated 
p-values are near 0.5 it can be considered that the Poisson-Gamma model adequately 
captures the variations indicated by the observed data. 
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Figure 17 Dot plot of the observed number of accidents in Norwegian junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson-Gamma regression model. 
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Figure 18 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson-Gamma regression model. The discrepancy 
measures T are: maximum, sum, mean and standard deviation (sd). The p is the 
estimated probability that the measures obtained by the posterior predictive 
distributions are greater than the ones obtained by the observed data. 
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The effect of the measure of discrepancy given by the ratio of variance over the mean, first 
suggested by Congdon (2005) to check whether the overdispersion of the data was being 
taken into account by the model is displayed in Figure 19. 
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Figure 19 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson-Gamma regression model for the 
same measure. The p gives the estimated probability that the measure obtained by 
the posterior predictive distributions is greater than the one obtained by the observed 
data. 

 

The value of 0.710 (reasonably close to 0.5) indicates that the replicated data obtained by 
the Poisson-Gamma model has a degree of overdispersion similar to the one of the observed 
data. Therefore, the model is allowing for the overdispersion. 

This model produces an average deviance, D  equal to 1141.200, an effective model 
dimension of 97.521 and a DIC equal to 1238.720. The dispersion parameter ( /1 ) was 

estimated as 0.384. The comparison of these results for all the fitted models is described in 
section 3.5. 

The expected number of accidents for a one year period for the several types of the 
categorical variables Number_of_Legs and Speed_Limit for the minimum, maximum, mean 
and median profiles of ln(AADTmaj) and ln(AADTmin) were calculated following the example 
given by Ntzoufras (2009). In the minimum and maximum profiles, the maximum and 
minimum values of ln(AADTmaj) and ln(AADTmin) were considered, respectively, since 
these variables are positively associated with the number of injury accidents (note the 
positive parameter estimates 1  and 2  in Table 4. 

Posterior means and corresponding standard deviations of the obtained expected number of 
injury accidents are provided in Table 6. The first two rows of Table 6 show the minimum, 
mean, median and maximum values of variables ln(AADTmaj) and ln(AADTmin) obtained 
from the data. The remaining values consist of the posterior means obtained from each 
profile. 
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Table 6 Posterior means and corresponding (standard deviations) of expected number of 
accidents for minimum, mean, median and maximum profiles obtained by the 
Poisson-Gamma regression model for the Norwegian accident data. 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 4.890 7.766 7.726 10.383 

 ln(AADTmin) 1.946 5.702 5.617 9.141 

Speed_Limit Number_of_Legs mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

40 3 7.43E-4 

(3.596E-04) 

0.018 

(0.007) 

0.017 

(0.007) 

0.335 

(0.136) 

 
4 

0.002 

(7.408E-04) 

0.041 

(0.016) 

0.039 

(0.015) 

0.771 

(0.312.) 

50 3 0.001 

(3.743E-04) 

0.033 

(0.006) 

0.031 

(0.006) 

0.615 

(0.118) 

 
4 

0.003 

(7.378E-04) 

0.077 

(0.012) 

0.073 

(0.011) 

1.423 

(0.232) 

60 3 0.003 

(4.704E-04) 

0.061 

(0.005) 

0.058 

(0.005) 

1.130 

(0.140) 

 
4 

0.006 

(0.001) 

0.143 

(0.022) 

0.135 

(0.021) 

2.645 

(0.445) 

70 3 0.004 

(6.958E-04) 

0.090 

(0.012) 

0.085 

(0.011) 

1.667 

(0.299) 

 
4 

0.009 

(0.002) 

0.210 

(0.039) 

0.199 

(0.037) 

3.910 

(0.828) 

80 3 0.003 

(3.977E-04) 

0.061 

(0.005) 

0.058 

(0.005) 

1.134 

(0.179) 

 
4 

0.006 

(0.001) 

0.143 

(0.022) 

0.135 

(0.021) 

2.656 

(0.499) 

90 3 0.002 

(9.601E-04) 

0.063 

(0.028) 

0.059 

(0.027) 

1.215 

(0.666) 

 
4 

0.006 

(0.003) 

0.148 

(0.070) 

0.140 

(0.066) 

2.861 

(1.556) 

 

For a typical (see the values on the Mean column in Table 6) three leg junction with a speed 
limit of 40km/h, one expects 0.018 accidents, while for a four leg junction with the same 
speed limit 0.041 accidents are expected, both for a one year period. 

Note that the worst case scenario (maximum profile) where junctions have 10.383 for log 
major traffic volume and 9.141 for log minor traffic volume corresponds to an expected 
number of accidents of 3.910 at a four leg junction with a 70km/h speed limit and 2.861 for a 
four leg junction with 90km/h speed limit. 

The highest expected number of accidents for each of the four scenarios considered 
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corresponds to four leg junctions with a speed limit of 70km/h. 

3.4 Poisson Log-Normal Regression Model 

The Poisson Log-Normal regression model was fitted to the data according to Equations 2.5 
and 2.6 where parameter   in Equation 2.6 was assigned an a priori Gamma(a,a) 

distribution with a=0.001. 

The MCMC algorithm was run with three chains for 35000 iterations with 33000 of those as 
burn-in with a thinning rate equal to 6. The results and conclusions were drawn from a 
sample with dimension 1002. 

The regression equation is given by Equation 3.1, where the   coefficient parameters were 

assigned non-informative a priori Normal distributions with mean zero and variance 10000. 

From the observation of the graphs depicted in Figure 20 concerning the Gelman-Rubin 
statistics, it is possible to notice that the Rhat statistic (red line) tends to 1 as the number of 
iterations increase and that both W and Vhat remain relatively constant. Consequently, there 
are reasons to believe that the iterative simulation converges. 
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Figure 20 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson Log-Normal regression model fit to the 
Norwegian accident data. 

 

The posterior means of the parameter estimates, corresponding standard deviations, Monte 
Carlo (MC) errors and 95% credible intervals are displayed in Table 7. 

The MC errors are considerably smaller than the corresponding standard deviations, in 
particular for the parameter coefficients of the logarithms of the AADT volumes indicating that 
the estimates were calculated with precision (see Ntzoufras, 2009). 
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Table 7 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson Log-Normal regression model 
was fit to the Norwegian accident data using a three leg junction with a 60km/h speed 
limit as baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -10.480 0.678 8.588E-02 -12.010 -9.303 

β1 (ln(AADTmaj)) 0.737 0.086 1.068E-02 0.582 0.946 

β2 (ln(AADTmin)) 0.301 0.060 6.255E-03 0.182 0.414 

β3 (Legs=‟4‟) 0.867 0.158 5.260E-03 0.561 1.168 

β4 (Speed_Limit=‟40‟) -1.563 0.911 2.879E-02 -3.563 -0.154 

β4 (Speed_Limit=‟50‟) -0.575 0.181 5.881E-03 -0.939 -0.239 

β4 (Speed_Limit=‟70‟) 0.445 0.193 9.703E-03 0.078 0.813 

β4 (Speed_Limit=‟80‟) 0.094 0.150 7.312E-03 -0.186 0.411 

β4 (Speed_Limit=‟90‟) -0.200 0.507 1.963E-02 -1.310 0.795 

 

From examination of the mean posterior estimates values in Table 7 it can be stated that 
every unit increase in ln(AADTmaj) increases the expected number of accidents by 
approximately 109% (and when the other variables remain constant). An increase in 
ln(AADTmin) increases the expected number of accidents by approximately 35%. See 
example on section 3.2. 

A 4-leg junction is a posteriori expected to have approximately 140% more accidents than a 
3-leg junction with the same speed limit and values for the two ln(AADT). 

A 40km/h junction is a posteriori expected to have approximately 79% less accidents than a 
60km/h junction (and constant values for the remaining variables). 

A junction with 50km/h speed limit is a posteriori expected to have 44% less accidents than a 
junction with the same values of ln(AADTmaj), ln(AADTmin) and number of legs but a 60 
km/h speed limit (see Table 7). Junctions with 70km/h and 80km/h are expected to have 
approximately 56% and 10% more injury accidents than a 60km/h junction. Furthermore, a 
90km/h junction is expected to have 18% less accidents than a 60km/h junction. 

The highest expected number of accidents is found to be on junctions with a 70km/h speed 
limit, regardless of the number of legs. 

The posterior densities of parameter estimates (for which the posterior mean is given in 
Table 7) are displayed in Figure 21. The mean of the posterior densities has shifted 
considerably away from zero (the a priori mean). 
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Figure 21 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson Log-Normal regression model was fit to the Norwegian data. 

 

The equations for the expected number of accidents per number of legs and speed limit of 
the junctions are given in Table 8. From observation of the values in the equations it is 
possible to deduce that, in general, 3-leg junctions have fewer expected numbers of 
accidents when compared to 4-leg junctions. 

 

Table 8 Expected number of accidents per year for Norwegian junctions obtained by a 
Poisson Log-Normal regression model using a three leg junction with a 60km/h speed 
limit as baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Speed_Limit 

„40‟ 

„50‟ 

„60‟ 

„70‟ 

„80‟ 

„90‟ 

 

301.0737.06 min10881.5ˆ iii AADTAADTmaj  
 

301.0737.05 min10579.1ˆ iii AADTAADTmaj  
 

301.0737.05 min10807.2ˆ iii AADTAADTmaj  
 

301.0737.05 min10381.4ˆ iii AADTAADTmaj  
 

301.0737.05 min10083.3ˆ iii AADTAADTmaj  
 

301.0737.05 min10299.2ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Speed_Limit 

„40‟ 

„50‟ 

„60‟ 

„70‟ 

„80‟ 

„90‟ 

 

301.0737.05 min10400.1ˆ iii AADTAADTmaj  
 

301.0737.05 min10758.3ˆ iii AADTAADTmaj  
 

301.0737.05 min10681.6ˆ iii AADTAADTmaj  
 

301.0737.04 min10043.1ˆ iii AADTAADTmaj  
 

301.0737.05 min10339.7ˆ iii AADTAADTmaj  
 

301.0737.05 min10472.5ˆ iii AADTAADTmaj  
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The expected number of accidents increases as the speed limit increases, reaching the 
highest value on junctions where the speed limit is 70km/h, then it decreases again for 
junctions with 80km/h and 90km/h. One possible explanation is that 80 and 90km/h limit 
intersections have more effective traffic channelization than lower speed intersection roads. 

3.4.1 Model Checking 

Figure 22 contains histograms of modelled data as well as the histogram of the observed 
data. Figure 23 displays dot plots of the observed number of accidents together with dot plots 
of replicated accident numbers under the Poisson log-Normal regression model. 

From both figures it can be stated that the modelled data appear similar to the observed data 
suggesting that the Poisson-Log-Normal model performs adequately.  
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Figure 22 Histogram of the observed number of accidents in Norwegian junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Log-Normal regression model. 
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Figure 23 Dot plot of the observed number of accidents in Norwegian junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Log-Normal regression model. 

 

The four discrepancy measures concerning the maximum, sum, mean and standard 
deviation (sd) values are displayed in Figure 24. The probabilities (p in the graphs) that the 
discrepancy measures obtained by the replicated data are greater than the corresponding 
discrepancy measures from the observed data lie within the acceptable boundaries of 0.1 to 
0.9 (Congdon, 2005). The p values for the sum, mean and sd measures are also relatively 
close to the recommended 0.5 value. 
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Figure 24 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1287 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson Log-Normal regression model fit to the Norwegian 
data. The discrepancy measures T are: maximum, sum, mean and standard deviation 
(sd). The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 

 

The values of the discrepancy measured suggested by Congdon (2005) to check whether 
the overdispersion was taken into account by the model are displayed in Figure 25. The 
probability that the ratio of the variance over the mean in the replicated data is greater than 
the corresponding ratio under the observed data is 0.733, which is a satisfactory value, 
although slightly higher than the ideal 0.5. Nevertheless, it can be concluded that the model 
is taking into account the overdispersion present in the observed data. 

This model produces an average deviance equal to 1149.120, an effective model dimension 
of 106.579 and a DIC value of 1255.700. The dispersion parameter ( /1 ) was estimated as 

0.363. The model‟s comparison will be discussed in section 3.5 of the present chapter. 
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Figure 25 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson Log-Normal regression model fit to 
the Norwegian data, for the same measure. The p gives the estimated probability that 
the measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 

 

The posterior means of the expected number of accidents in Norwegian junctions, for a one 
year period, for four possible scenarios or profiles are given in Table 9, together with their 
corresponding standard values. 

A typical junction with 3 legs and 40km/h speed limit is expected to have 0.014 injury 
accidents in a one year period. Furthermore, a typical junction with 4 legs and 70km/h speed 
limit is expected to have 0.172 accidents in the same period of time. These junctions have 
the higher expected number of accidents followed by junctions with 4 legs with 80km/h and 
60km/h speed limit, with 0.120 and 0.109 expected accidents in a one year period. 

The worst case scenario (for maximum values of ln(AADTmaj) and ln(AADTmin) have higher 
expected number of accidents for 4 leg junctions with 70, 80 and 60km/h (with expected 
values equal 3.536, 2.491 and 2.253). 
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Table 9 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson Log-Normal regression 
model for the Norwegian accident data. 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 4.890 7.766 7.726 10.383 

 ln(AADTmin) 1.946 5.702 5.617 9.141 

Speed_Limit Number_of_Legs mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

40 3 5.639E-04 

(4.943E-04) 

0.014 

(0.011) 

0.013 

(0.010) 

0.273 

(0.218) 

 
4 

0.001 

(0.001) 

0.033 

(0.026) 

0.031 

(0.025) 

0.646 

(0.512) 

50 3 0.001 

(4.196E-04) 

0.027 

(0.005) 

0.026 

(0.005) 

0.531 

(0.117) 

 
4 

0.003 

(0.001) 

0.065 

(0.014) 

0.062 

(0.013) 

1.269 

(0.298) 

60 3 0.002 

(6.605E-4) 

0.048 

(0.006) 

0.046 

(0.006) 

0.943 

(0.198) 

 
4 

0.005 

(0.002) 

0.116 

(0.021) 

0.109 

(0.020) 

2.253 

(0.514) 

70 3 0.003 

(0.001) 

0.076 

(0.013) 

0.072 

(0.013) 

1.478 

(0.338) 

 
4 

0.007 

(0.003) 

0.182 

(0.041) 

0.172 

(0.039) 

3.536 

(0.895) 

80 3 0.002 

(6.663E-04) 

0.053 

(0.006) 

0.050 

(0.006) 

1.040 

(0.244) 

 
4 

0.005 

(0.002) 

0.127 

(0.024) 

0.120 

(0.022) 

2.491 

(0.644) 

90 3 0.002 

(9.634E-04) 

0.044 

(0.022) 

0.042 

(0.020) 

0.878 

(0.512) 

 
4 

0.004 

(0.002) 

0.105 

(0.052) 

0.099 

(0.049) 

2.081 

(1.205) 

3.5 Discussion 

Table 10 shows the resulting fit ( D ), complexity (de) and overall model choice (DIC) score for 
the three models considered. In terms of overall model choice the Poisson Log-Normal 
emerges as the best with the Poisson model performing the worst. The results of de suggest 
that the use of the additive random error in the Poisson Log-Normal model (see section 
2.2.2) contributes an extra nine effective parameters (Poisson-Gamma versus Poisson Log-
Normal model). Taking into account both the DIC and the de values the model chosen to best 
describe the Norwegian junction data is the Poisson-Gamma, even though the results 
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obtained by these two models do not differ substantially. 

 

Table 10 Comparison of DIC and related statistics for the three models fitted to the Norwegian 
junction data. 

Regression Model D  de DIC 

Poisson 

Poisson-Gamma 

Poisson Log-Normal 

451.08 

1141.200 

1149.120 

57.93 

97.521 

106.579 

509.00 

1238.720 

1255.700 

 

From the modelled data it can be concluded that junctions with 4 legs have a higher 
expected number of accidents than 3-legged ones, as can be seen by the posterior means of 
the expected values of the number of injury accidents depicted as straight lines in Figure 26 
for every type of junction. This finding is not unusual because four legged junctions have 
more conflict points than three legged ones. 
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Figure 26 Values of the posterior means of the expected number of accidents for Norwegian 
junctions classified per speed limit and number of legs (as under column Mean in 
Table 9). 

4 Modelling Austrian injury accidents 

The present chapter starts by giving a brief description of the data measured at rural road 
junctions in Austria (section 4.1) and proceeds with the model fit, assessment and checking 
of three regression models including the Poisson (section 4.2), the hierarchical Poisson-
Gamma (section 4.3) and the hierarchical Poisson Log-Normal models (section 4.4) where 
the response variable was the number of injury accidents occurring within 50 metres from the 
junctions. The final section (4.5) summarises the results obtained. 
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4.1 Austrian Junction Data 

The data described and analysed in this chapter have been provided by Dr Robert Bauer of 
the KFV (Austrian Safety Board) and consists on several measurements registered on 213 
junctions of the Austrian national road network located in the province of Lower Austria. The 
data was collected on the four year period ranging from 2007 to 2010. The sample of 213 
junctions is based on a list of police recorded accidents on rural junctions ranging from 2003 
to 2010. This list was supplemented with information about the respective junction from aerial 
photos and the respective traffic volumes (values for the most recent year). In order to have 
also junctions with zero accidents in the sample the range was reduced to years 2007 to 
2010. Due to this procedure junctions with zero accidents are most probably under-
represented in this sample. 

The variables registered included, per junction: 

 Intersection_code: gives the junction reference, corresponding to the codes of 
the road segments that form the junction; 

 Junction_Type: a categorical variable referring to the type of the junction, it 
takes the values „roundabout‟, „X‟ or „Y‟; 

 Traffic_Control: a categorical variable indicating the type of traffic control in the 
junction, it takes the values „signalised‟, „stop‟ or „yield‟; 

 Accidents: gives the number of injury accidents; 

 Serious: represents the number of accidents which resulted in serious injured 
victims; 

 Killed: gives the number of fatalities; 

 AADTmaj: represents the traffic volume entering the major road legs (annual 
average daily traffic); 

 AADTmin: represents the traffic volume entering the minor road legs (annual 
average daily traffic). 

 

The data can be best described and analysed after several graphical plots have been 
performed and examined. Figure 27 shows three plots corresponding to the number of 
accidents (Accidents), number of fatalities (Killed) and number of serious injury accidents 
(Serious) per junction. From observation of the upper left panel in Figure 27 (regarding 
variable Accidents) it can be easily seen that there are two junctions where fourteen and 
thirteen injury accidents have occurred (between 2007 to 2010). 

The five fatalities occurred in separate five junctions, as can be seen on the upper right panel 
in Figure 27. 

There were two junctions with three and six accidents each that have caused seriously 
injured victims (lower panel in Figure 27). 
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Figure 27 Plots of Accidents, Killed, and Serious, per junction, from upper left to right, 
respectively, registered from 2007 to 2010 in the Austrian rural road network 
junctions. 

 

The bar plots shown in Figure 28 consist of sequences of rectangular bars with heights given 
by the values in each of the three variables (Accidents, Killed and Serious), and therefore 
corresponding to four years of data collection. 

By observation of the upper left panel in Figure 28 (i.e. the bar plot obtained by variable 
Accidents) it can be observed that there are more junctions where one accident has occurred 
than junctions without accidents (the bar corresponding to zero). 

There is the presence of a junction where six accidents (occurred during the four year period) 
have provoked seriously injured victims (see the lower panel in Figure 28, corresponding to 
variable Serious, and also the lower panel in Figure 27). 

In more than half of the overall junctions no fatal injuries have occurred as well as accidents 
resulting in serious injured victims (this can be seen by the bars corresponding to the value 
zero for variables Killed and Serious which have the highest heights). 

The maximum number of fatalities per junction was one (see right upper panel in Figure 28). 
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Figure 28 Bar plots giving the frequencies of the total number of accidents, fatalities and 
seriously injured victims registered from 2007 to 2010 on Austrian junctions from the 
rural road network. 

 

From the observation of the plots depicting the number of accidents per AADT values (Figure 
29 with corresponding descriptive statistics shown in Table 11), it can be seen that most 
accidents occur for values of AADTmaj between 567 and 10000 (left plot) and for 560 to 
around 4000 for AADTmin (right plot). 

The fitted smooth regression curve employing a regression function developed by Venables 
and Ripley (2002) could not be applied with the AADTmin values (see right panel in Figure 
29) due to the high number of equal values. 

The junction where 13 accidents were registered in the four year period can be observed on 
both panels in Figure 29. Due to lack of further information it was decided to maintain that 
junction in the data set. 
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Figure 29 The number of accidents per junction in the Austrian data set against AADTmaj 
and AADTmin, and corresponding polynomial fit for the AADTmaj, on the left and right 
panels, respectively. 

 

Figure 30 shows that the majority of the Austrian junctions were of type Y and X with only 
thirty nine junctions of type roundabout (see left panel in Figure 30). More than 120 junctions 
had a traffic control of type yield with only seven with type signalised (see panel on the right). 
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Figure 30 Bar plots giving the frequencies of the number of junctions per categories of 
variables Junction_Type and Traffic_Control, registered from 2007 to 2010 on 
Austrian junctions from the rural road network. 

 

There were 84 junctions with type stop as traffic control. 
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Figure 31 Box plots of the total number of accidents registered in 2007 -2010 at Austrian 
junctions by group for Junction_Type and Traffic_Control, on the left and right panels, 
respectively. 

 

The panels shown in Figure 31 illustrate the distributions of the number of accidents 
according to the levels of variables Junction_Type (left panel) and Traffic_Control (right 
panel). On the panel on the left it can be observed that only the median of junction type 
roundabout differs from the median of the other types. 

 

Table 11 Summary statistics for the variables registered on Austrian junctions from 2007 to 
2010. 

Variables minimum mean standard 
deviation 

median maximum 

AADTmaj 567 6863.038 4210.441 5759 30278 

AADTmin 560 1035.061 1518.719 560 10456 

Accidents 0 1.418 1.690 1 13 

Serious 0 0.282 0.648 0 6 

Fatalities 0 0.019 0.136 0 1 

 

The values in Table 11 concern the five summary statistics of the non-categorical variables 
measured on the Austrian junctions from 2007 to 2010. The mean number of injury accidents 
was equal to 1.418. 

4.2 The Poisson Regression Model 

The Poisson regression model given by Equations 2.1 and 2.2 was fitted to the data with the 
number of injury accidents (Accidents) as the dependent variable and the natural logarithms 
of both AADTmaj and AADTmin as well as the categorical variables Junction_Type and 
Traffic_Control as explanatory, as shown on Equation 4.1 (corresponding to Equation 2.2). 

ln( î ) = β0 + β1ln(AADTmaji) + β2ln(AADTmini) + β3Traffic_Controli + β4Junction_Typei      (4.1) 

Where î  is the expected number of injury accidents for a period of one year. The β 
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parameters were assigned Normal a priori distributions with mean equal to zero and variance 
10000. The baseline, or reference, categories for the categorical variables are: 

Traffic_Control = „yield’; 

Junction_Type = ‘Y‟. 

 

The MCMC algorithm comprised three chains and was run for 35000 iterations with 33000 as 
burn-in with a thinning rate equal to 6. The results were drawn from final samples with 
dimension 1002. 

From the observations of the graphs obtained from the Gelman-Rubin statistics for the 
estimates of all the β parameters, and depicted in Figure 32, it can be seen that the Rhat 
statistic (represented by the red line in the graphs) converges to 1 and that both W (blue line) 
and Vhat (green line) stabilise as the number of iterations increase. This indicates that there 
are no reasons to suspect non-convergence of the iterative simulations. 
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Figure 32 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson regression model fitted to the Austrian 
junction accident data. 

 

The point estimates for the model represented by Equation 4.1 are given in Table 12. These 
point estimates are given by the posterior means obtained for the distributions a posteriori of 
each unknown parameter. Table 12 also shows the standard deviations, Monte Carlo errors 
and 95% credible intervals for the estimates of the coefficient parameters as shown in 
Equation 4.1. 

The 95% credible intervals for the estimates of the continuous independent variable 
ln(AADTmaj) do not include zero thus indicating that this variable is relevant when predicting 
the expected frequency of accidents. The 95% credible interval for the estimate of 
ln(AADTmin) includes zero, however, from observation of this estimate‟s densities in Figure 
33, it can be seen that the mean shifts away from zero indicating that this variable can still be 
considered as relevant in the model. 

The Monte Carlo errors show relatively low values indicating that the parameters were 
calculated with accuracy. 
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Table 12 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson regression model was fitted to 
the Austrian accident data using a „Y‟ type junction with a „yield’ traffic control as 
baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -5.804 0.730 9.079E-02 -7.356 -4.569 

β1 (ln(AADTmaj)) 0.440 0.071 8.578E-03 0.302 0.585 

β2 (ln(AADTmin)) 0.141 0.081 9.565E-03 -0.022 0.300 

β3 (Traffic_Control=‟sign‟) -1.001 0.436 1.665E-02 -1.939 -0.225 

β3 (Traffic_Control=‟stop‟) -0.388 0.141 5.026E-03 -0.676 -0.109 

β4 
(Junction_Type=‟roundabout‟) 

0.285 0.172 8.497E-03 0.077 0.628 

β4 (Junction_Type=´X‟) 0.213 0.145 4.993E-03 -0.063 0.502 

 

The coefficient estimates in Table 12 suggest that the expected number of accidents on 
junctions with traffic control of type „stop‟ are a posteriori expected to have around 
approximately 32% less accidents than a junction with traffic control of type „yield‟ but the 
same values of ln(AADTmaj) and ln(AADTmin) and junction type. However, junctions with 
traffic control of type „signalised‟ are a posteriori expected to have approximately 63% less 
accidents than a junction with traffic control „yield‟ for the same values of the remaining 
explanatory variables. 

Also, according to the Poisson regression model, junctions with type „roundabout‟ and „X‟ are 
expected to have around 33% and 24% more accidents than junctions with type „Y‟, for the 
same values of the remaining explanatory variables. 

The posterior densities of the parameter estimates are shown in Figure 33. It shows that the 
mean values of these distributions have moved away from zero (the mean value assumed a 
priori). 
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Figure 33 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson regression model was fit to the Austrian data. 

 

The expected numbers of accidents, for a one year period, at junctions in Lower Austria are 
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given by the equations shown in Table 13, for the various categories of the explanatory 
variables Traffic_Control and Junction_Type. 

It can be observed that „signalised’ junctions produce the least number of predicted 
accidents, followed by „stop‟ and „yield‟ controlled junctions, this last with the higher number 
of expected accidents. 

The type of junction with higher expected number of accidents is „yield‟. The number of 
accidents decreases for „roundabout‟ and „X‟, with „Y‟ having the lowest value. 

For each category of Traffic_Control the type of junction with the lowest expected number of 
accidents is Y. 

Intersections with three approaches (legs) have the lowest predicted number of accidents in 
all the intersection control categories modelled. 

 

Table 13 Expected number of accidents per year for Austrian junctions obtained by a Poisson 
regression model using a „Y‟ type junction with a „yield’ traffic control as baseline. 

 Expected Numbers of Accidents 

Traffic_Control=‟signalised‟  

Junction_Type 

„X‟ 

„Y‟ 

 

140.0440.03 min10371.1ˆ iii AADTAADTmaj  
 

140.0440.03 min10110.1ˆ iii AADTAADTmaj  
 

Traffic_Control=‟stop‟  

Junction_Type 

„X‟ 

„Y‟ 

 

140.0440.03 min10533.2ˆ iii AADTAADTmaj  
 

140.0440.03 min10047.2ˆ iii AADTAADTmaj  
 

Traffic_Control=‟yield‟  

Junction_Type 

„roundabout‟ 

„X‟ 

‟Y‟ 

 

140.0440.03 min10011.4ˆ iii AADTAADTmaj  
 

140.0440.03 min10732.3ˆ iii AADTAADTmaj  
 

140.0440.03 min10017.3ˆ iii AADTAADTmaj  
 

4.2.1 Model Checking 

The histograms and dot plots in Figures 34 and 35 illustrate the observed and modelled 
accident data at Austrian junctions over the four year period. The replicated data sets were 
obtained from the Poisson regression model given by the equation in Table 13. 
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Figure 34 Histogram of the observed number of accidents in Austrian junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson regression model. 

 

The x axis of the dotplots in Figure 35 corresponds to the junction‟s indexes and the y axis to 
the number of accidents. 
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Figure 35 Dot plot of the observed number of accidents in Austrian junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson regression model.  

 

Both figures reveal that the replicated data does generally not resemble the observed data 
(graphs in grey). In particular, observing the dot plots in Figure 35 it can be noticed that the 
predicted data for junctions indexed as number 1 to around junction 100 do not have the high 
values of number of injury accidents that are present in the observed data (grey dot plot at 
the top left panel). 

The four discrepancy measures are plotted in Figure 36. Observation of this figure together 
with the estimated probabilities that the replicated data is greater than the observed 
discrepancy shows that the Poisson model does not seem to be able to capture the 
maximum value and the standard deviation of the observed data. 
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Figure 36 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson regression model fit to the Austrian data. The 
discrepancy measures T are: maximum, sum, mean and standard deviation (sd). The 
p is the estimated probability that the measures obtained by the posterior predictive 
distributions are greater than the ones obtained by the observed data. 

 

The effect of the measure of discrepancy suggested by Congdon (2005) to help checking 
whether the overdispersion of the data was being taken into account by the model (variance 
over the mean) is displayed in Figure 37. 

The estimated probability that the ratios of the variance to the means in the replicated data is 
greater than the same ratio calculated from the observed data, is equal to 0.003, which is a 
very small value, indicating that there is overdispersion that is not being replicated by the 
Poisson model. Consequently, there are strong reasons to believe that the Poisson 
regression model is not appropriate to describe the number of accidents in the Austrian 
junction data. 

This model produces an average deviance, D , equal to 678.869, an effective model 
dimension of 6.758 and a DIC equal to 685.627. 
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Figure 37 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson regression model fit to the Austrian 
data, for the same measure. The p gives the estimated probability that the measure 
obtained by the posterior predictive distributions is greater than the one obtained by 
the observed data. 

4.3 The Poisson-Gamma hierarchical regression model 

The Poisson-Gamma hierarchical regression model was fitted to the Austrian junction data 
using Equations 2.3 and 2.4 with    and ),(~ aaGamma  with a=0.1. Equation 4.1 was 

applied and the   parameters were given a priori Normal distributions with mean 0 and 

precision 0.0001 (the variance is equal to the inverse of the precision). 

The MCMC algorithm comprised 3 chains and was run for 35000 iterations with 33000 burn-
in iterations with a thinning rate of 6. The results thus described were based on a sample 
with dimension equal to 1002. 
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Figure 38 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson-Gamma regression model fitted to the 
Austrian junction accident data. 
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The Gelman-Rubin plots for the   parameters are displayed in Figure 38. The Rhat statistic 

(represented by the red line) tends to 1 for all estimated parameters apart from the   

corresponding to factor „stop‟ of variable Traffic_Control, which decreased up to around 
iteration 5600 but then increased after that, as well as the estimate of category „roundabout‟ 
for Junction_Type. 

Since there are no reasons to doubt the non-convergence of the majority of the parameters it 
is assumed that the MCMC algorithm has converged to each corresponding stationary 
distributions. 

The Monte Carlo standard errors are relatively low values indicating that the parameters 
were calculated with accuracy (see Ntzoufras, 2009). 

Point estimates, and corresponding standard deviations, Monte Carlo standard errors and 
95% credible intervals, obtained after the Poisson-Gamma model was fit to the data, are 
displayed in Table 14. From the examination of the point mean estimates it can be stated 
that, according to this particular Poisson-Gamma model, every unit increase in ln(AADTmaj) 
increases the expected frequency of accidents by approximately 18% (and assuming that all 
the other explanatory variables remain constant). An increase in one unit of ln(AADTmin) 
increases the expected frequency of accidents in only 5%. See example on section 3.2. 

 

Table 14 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson-Gamma regression model was 
fit to the Austrian accident data using a „Y‟ type junction with a „yield’ traffic control as 
baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -2.751 0.810 1.116E-01 -3.705 -1.454 

β1 (ln(AADTmaj)) 0.168 0.108 1.470E-02 -0.013 0.344 

β2 (ln(AADTmin)) 0.045 0.087 1.161E-02 -0.132 0.211 

β3 (Traffic_Control=‟sign‟) -0.659 0.484 6.651E-02 -1.347 0.203 

β3 (Traffic_Control=‟stop‟) -0.446 0.205 2.760E-02 -0.744 -0.060 

β4 
(Junction_Type=‟roundabout‟) 

0.332 0.145 1.899E-02 0.130 0.697 

β4 (Junction_Type=´X‟) 0.128 0.126 1.653E-02 -0.134 0.334 

 

Signalised and stop controlled junctions have a lower predicted number of accidents (48% 
and 36%) when compared to „yield‟ controlled junctions (and the remaining explanatory 
variables are kept constant). roundabout‟ and „X‟ are a posteriori expected to have a higher 
expected accidents of around 39% and 14%, respectively, when compared with equivalent 
junctions of type „Y‟ (being the other explanatory variables with constant values). 

 

 

 

 

 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 71 of 159 

beta0 chains 1:3 sam ple: 1002

   -4.0    -3.0    -2.0

    0.0

    0.5

    1.0

    1.5

beta1 chains 1:3 sam ple: 1002

   -0.2     0.0     0.2     0.4

    0.0

    2.0

    4.0

    6.0

beta2 chains 1:3 sam ple: 1002

   -0.4    -0.2     0.0     0.2

    0.0

    2.0

    4.0

    6.0

beta.jty[2] chains  1:3 sam ple: 1002

    0.0    0.25     0.5    0.75

    0.0

    1.0

    2.0

    3.0

    4.0

beta.jty[3] chains  1:3 sam ple: 1002

   -0.4    -0.2     0.0     0.2     0.4

    0.0

    1.0

    2.0

    3.0

    4.0

beta.trafcont[2] chains  1:3 sample: 1002

   -2.0    -1.5    -1.0    -0.5     0.0

    0.0

    0.5

    1.0

    1.5

beta.trafcont[3] chains  1:3 sample: 1002

   -1.0   -0.75    -0.5   -0.25     0.0

    0.0

    1.0

    2.0

    3.0

 

Figure 39 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson-Gamma regression model was fit to the Austrian data. 

 

The posterior densities of the estimated   coefficient parameters are displayed in Figure 39. 

Several spikes can be observed on all parameter densities. 

The expected frequency of accidents for a one year period is given by the equations 
displayed in Table 15. 

 

Table 15 Expected number of accidents per year for Austrian junctions obtained by a Poisson-
Gamma regression model using a „Y‟ type junction with a „yield’ traffic control as 
baseline. 

 Expected Numbers of Accidents 

Traffic_Control=‟signalised‟  

Junction_Type 

„X‟ 

„Y‟ 

 

045.0168.02 min10757.3ˆ iii AADTAADTmaj  
 

045.0168.02 min10305.3ˆ iii AADTAADTmaj  
 

Traffic_Control=‟stop‟  

Junction_Type 

„X‟ 

„Y‟ 

 

045.0168.02 min10649.4ˆ iii AADTAADTmaj  
 

045.0168.02 min10090.4ˆ iii AADTAADTmaj  
 

Traffic_Control=‟yield‟  

Junction_Type 

„roundabout‟ 

„X‟ 

„Y‟ 

 

045.0168.02 min10903.8ˆ iii AADTAADTmaj  
 

045.0168.02 min10261.7ˆ iii AADTAADTmaj  
 

045.0168.02 min10389.6ˆ iii AADTAADTmaj  
 

 

The junctions with signalised traffic control have the lowest expected frequencies of 
accidents than any of the other three categories. The level of Traffic_Control with the highest 
expected frequencies of injury accidents is the „yield‟. 
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The junctions with type „X‟ have the highest expected accident frequency of the categorical 
variable Junction_Type. They are followed by category „Y‟ being this one the type where less 
number of accidents is expected. 

When considering traffic control equal to „yield‟, the „roundabouts‟ have higher expected 
number of injury accidents than types „X‟ and „Y‟. 

4.3.1 Model Checking 

Graphs of replicated data in the form of histograms and dot plots are displayed in Figure 40 
and Figure 41, respectively. Both the histograms and the dot plots show that the observed 
data seems plausible under the posterior predictive distribution data represented by the 
histograms and dot plots of the replicated data. 
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Figure 40 Histogram of the observed number of accidents in Austrian junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Gamma regression model. 
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Figure 41 Dot plot of the observed number of accidents in Austrian junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson-Gamma regression model. 

 

The dot plots displayed in Figure 41 show that for junctions indexed as 1 to around 100 the 
model seemed able to replicate higher values of accident occurrences, just as it was 
observed in the real data (grey dot plot at top left in Figure 41). 

The four discrepancy measures; max, sum, mean and sd are displayed in Figure 42. The 
posterior probability of the discrepancy measures obtained from the replicated data being 
greater than the corresponding discrepancy measures resulting from the observed data show 
better results for the Poisson-Gamma regression model than they did for the Poisson 
regression (see Figure 36). 
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Figure 42 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson-Gamma regression model fit to the Austrian data. 
The discrepancy measures T are: maximum, sum, mean and standard deviation (sd). 
The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 
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Figure 43 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson-Gamma regression model fit to the 
Austrian data, for the same measure. The p gives the estimated probability that the 
measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 

 

Figure 43 shows the graph of the discrepancy measure obtained by the variance to mean 
ratio, giving an estimated posterior probability equal to 0.211 which indicates that the 
Poisson-Gamma model does not seem to be taking the observed data overdispersion into 
account, even though the estimated probability is within the satisfactorily limits proposed by 
Congdon (2005) of 0.1 to 0.9. 
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This model produces an average deviance, D , of 585.535 and an effective model 
dimension, de, of 63.177, giving a DIC of 648.711. 

The dispersion parameter ( /1  in Equation 2.4) was estimated as 0.364. 

The expected accident frequency for the four junction types and three traffic controls of 
junctions for the minimum, mean, median and maximum profiles have been calculated. In 
these profiles the minimum, mean, median and maximum values of ln(AADTmaj) and 
ln(AADTmin) were considered, since these variables are positively associated with the 
number of injury accidents. 

The posterior means and the corresponding standard deviations of these profiles are 
provided in Table 16. 

 

Table 16 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson-Gamma regression 
model for the Austrian accident data. 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 6.340 8.643 8.659 10.318 

 ln(AADTmin) 6.328 6.575 6.323 9.255 

Junction_Type Traffic_Control mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

roundabout yield 0.358 

(0.103) 

0.577 

(0.134) 

0.579 

(0.135) 

0.840 

(0.258) 

 signalised 0.166 

(0.086) 

0.286 

(0.195) 

0.287 

(0.196) 

0.436 

(0.358) 

X stop 0.183 

(0.037) 

0.298 

(0.055) 

0.299 

(0.055) 

0.437 

(0.127) 

 
yield 

0.295 

(0.098) 

0.472 

(0.116) 

0.473 

(0.116) 

0.682 

(0.212) 

 signalised 0.145 

(0.072) 

0.248 

(0.161) 

0.249 

(0.162) 

0.377 

(0.296) 

Y stop 0.161 

(0.035) 

0.263 

(0.050) 

0.263 

(0.050) 

0.384 

(0.111) 

 
yield 

0.259 

(0.083) 

0.414 

(0.096) 

0.415 

(0.096) 

0.598 

(0.175) 

 

For a typical junction (under column Mean) with type „roundabout‟ and „yield‟ traffic control it 
is expected 0.577 accidents, while for a junction of type „Y‟ and with „signalised‟ for traffic 
control the corresponding number of injury accidents is about 0.248 (the lowest value). 

The worst case scenario (maximum profile) where junctions with 10.318 of ln(AADTmaj) and 
a ln(AADTmin) of 9.255 corresponds to an expected number of 0.840 and 0.682 injury 
accidents for „roundabout‟ yield junctions and „X‟ yield junctions, respectively. 

 

 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 76 of 159 

4.4 The Poisson Log-Normal regression model 

The Poisson Log-Normal regression model was fit to the data according to Equations 2.5 and 
2.6 in Chapter 2, where the parameter   in Equation 2.6 had a Gamma(a,a) a priori 

distribution with a=0.001. 

The MCMC algorithm was run with three chains for 35000 iterations with 33000 as burn-in 
with a thinning rate equal to 6. The results were drawn from samples with dimension 1002. 

The graphs depicted in Figure 44 show the three Gelman-Rubin statistics obtained for the 
estimates of the   parameters. It can be observed in all of the graphs that the Rhat statistic 

(red line) converges to the value one as the iterations increase. The other two statistics (W 
and Vhat) remain constant. Therefore, there are no reasons to suspect the non-convergence 
of the iterative simulation. 
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Figure 44 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson Log-Normal regression model fitted to 
the Austrian junction accident data. 

The posterior means of the parameter estimates, corresponding standard deviations, Monte 
Carlo standard errors and 95% credible intervals are displayed in Table 17. 

 

Table 17 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson Log-Normal regression model 
was fit to the Austrian accident data using a „Y‟ type junction with a „yield’ traffic 
control as baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -6.021 1.558 2.081E-01 -8.897 -3.180 

β1 (ln(AADTmaj)) 0.439 0.163 2.173E-02 0.139 0.754 

β2 (ln(AADTmin)) 0.145 0.100 1.224E-02 -0.038 0.336 

β3 (Traffic_Control=‟sign‟) -0.932 0.536 2.406E-02 -2.061 0.080 

β3 (Traffic_Control=‟stop‟) -0.333 0.177 7.421E-03 -0.674 -0.008 

β4 
(Junction_Type=‟roundabout‟) 

0.331 0.221 1.320E-02 -0.128 0.758 

β4 (Junction_Type=´X‟) 0.184 0.173 6.893E-03 -0.149 0.512 
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The MC errors have small values indicating that the parameter estimates were calculated 
with accuracy. The 95% credible intervals for some of the parameter estimates contain zero, 
however, from the observation of the estimates densities in Figure 45 it can be concluded 
that the mean is away from zero (this former value lying usually on the tail of the densities). 
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Figure 45 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson Log-Normal regression model was fit to the Austrian data. 

 

From the examination of the mean posterior estimates in Table 17 it can be stated that every 
unitary increase in ln(AADTmaj) increases the expected number of accidents by 
approximately 55%, provided the other explanatory variables remain constant. An increase in 
one unit of ln(AADTmin) increases the expected frequency of injury accidents in around 16%. 
See example on section 3.2. 

A junction with ‘signalised‟ and „stop‟ as traffic control are a posteriori expected to have 
approximately 61% and 28% fewer accidents, respectively, than a junction with „yield‟ for 
traffic control (with the other explanatory variables remaining constant). 

A junction with type „roundabout‟ and „X‟ are expected to have an increase in the expected 
number of accidents by 39% and 20%, respectively, when compared with a junction with type 
„Y‟ (provided the other variables remain constant). 

The equations giving the expected frequency of injury accidents, per year, per junction type 
and traffic control are given in Table 18. 
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Table 18 Expected number of accidents per year for Austrian junctions obtained by a Poisson 
Log-Normal regression model using a „Y‟ type junction with a „yield’ traffic control as 
baseline. 

 Expected Numbers of Accidents 

Traffic_Control=‟signalised‟  

Junction_Type 

„X‟ 

„Y‟ 

 

145.0439.03 min10150.1ˆ iii AADTAADTmaj  
 

145.0439.04 min10566.9ˆ iii AADTAADTmaj  
 

Traffic_Control=‟stop‟  

Junction_Type 

„X‟ 

„Y‟ 

 

145.0439.03 min10093.2ˆ iii AADTAADTmaj  
 

145.0439.03 min10741.1ˆ iii AADTAADTmaj  
 

Traffic_Control=‟yield‟  

Junction_Type 

„roundabout‟ 

„X‟ 

„Y‟ 

 

145.0439.03 min10381.3ˆ iii AADTAADTmaj  
 

145.0439.03 min10919.2ˆ iii AADTAADTmaj  
 

145.0439.03 min10428.2ˆ iii AADTAADTmaj  
 

 

The junctions with yield traffic control have higher expected frequencies of accidents than 
any of the other three categories, being the traffic control equal to „signalised‟ the one whose 
junctions have lower expected accident frequencies. 

The junctions with type „roundabout‟ have the higher expected accident frequency of the 
categorical variable Junction_Type. They are followed by factors „X‟ and „Y‟ being the latter 
the type where less number of accidents is expected. 

4.4.1 Model Checking 

Figure 46 contains nineteen histograms of replicated data under the Poisson Log-Normal 
model as well as the histogram of the observed number of injury accidents. In general, it can 
be stated that the model under consideration is able to replicate conveniently the observed 
data. 

The dot plots of a further set of nineteen replicated data sets are displayed in Figure 47. 
Again there are no reasons to suspect that the model does not replicate conveniently the 
observed data (Accidents). 
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Figure 46 Histogram of the observed number of accidents in Austrian junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Log-Normal regression model. 

 

 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 80 of 159 

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

0 50 100 200

0
5

1
0

1
5

 

Figure 47 Dot plot of the observed number of accidents in Austrian junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Log-Normal regression model. 

 

The four discrepancy measures concerning the maximum, sum, mean and standard 
deviation (sd) values are displayed in Figure 48. 
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Figure 48 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson Log-Normal regression model fit to the Austrian 
data. The discrepancy measures T are: maximum, sum, mean and standard deviation 
(sd). The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 

 

The probabilities (denoted by p in the graphs) that the discrepancy measures obtained by the 
replicated data are greater than the corresponding discrepancy measures from the observed 
data lie within the satisfactory boundaries of 0.1 to 0.9 as suggested by Congdon (2005). The 
p values are also near 0.5 for all the discrepancies apart from the discrepancy measuring the 
maximum value in the data. 

The values of the discrepancy measure used to check whether the overdispersion is taken 
into account by the Poisson Log-Normal model are displayed in Figure 49. The probability 
that the ratios of the variance over the mean each replicated data set is greater than the 
same ratio calculated under the observed data, is 0.455, which is a reasonable value by 
being close to 0.5. It can be concluded that the model is taking the overdispersion into 
account. 
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Figure 49 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson Log-Normal regression model fit to 
the Austrian data, for the same measure. The p gives the estimated probability that 
the measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 

 

This model produces an average deviance, D , of 578.013 and an effective model 
dimension, de, of 66.310, giving a DIC of 644.323. 

The expected accident frequency for the three traffic control levels and four junction types for 
the minimum, mean, median and maximum profiles, obtained by the posterior means, are 
depicted in Table 19. In these profiles the minimum, mean, median and maximum values of 
ln(AADTmaj) and ln(AADTmin) were acknowledge since these variables are positively 
associated with the number of injury accidents. 
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Table 19 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson Log-Normal regression 
model for the Austrian accident data. 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 6.340 8.643 8.659 10.318 

 ln(AADTmin) 6.328 6.575 6.323 9.255 

Junction_Type Traffic_Control mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

roundabout yield 0.153 

(0.073) 

0.542 

(0.126) 

0.547 

(0.127) 

1.529 

(0.634) 

 signalised 0.059 

(0.044) 

0.211 

(0.128) 

0.213 

(0.130) 

0.597 

(0.425) 

X stop 0.093 

(0.040) 

0.338 

(0.089) 

0.342 

(0.091) 

0.977 

(0.473) 

 
yield 

0.128 

(0.052) 

0.473 

(0.130) 

0.477 

(0.132) 

1.379 

(0.722) 

 signalised 0.050 

(0.039) 

0.176 

(0.111) 

0.178 

(0.112) 

0.495 

(0.353) 

Y stop 0.078 

(0.034) 

0.281 

(0.073) 

0.284 

(0.074) 

0.807 

(0.376) 

 
yield 

0.107 

(0.043) 

0.391 

(0.099) 

0.395 

(0.101) 

1.135 

(0.564) 

 

For a typical roundabout junction (under column Mean) with type „yield‟ as traffic control it is 
expected 0.542 accidents, while for a junction of type „Y‟ and with „signalised‟ for traffic 
control the corresponding number of injury accidents is about 0.176. 

The worst case scenario (maximum profile) where junctions with 10.318 as ln(AADTmaj) and 
9.255 of ln(AADTmin) corresponds to an expected number of 1.529 and 1.379 injury 
accidents for „roundabout‟ yield junctions and „X‟ yield junctions, respectively. 

4.5 Discussion 

The Table 20 shows the resulting fit ( D ), complexity (de) and overall model choice (DIC) 
score for the models fit to the Austrian junction data. 

 

Table 20 Comparison of DIC and related statistics for the three models fitted to the Austrian 
junction data. 

Regression Model D  de DIC 

Poisson 

Poisson-Gamma 

Poisson Log-Normal 

678.869 

585.535 

578.013 

6.758 

63.177 

66.310 

685.627 

648.711 

644.323 
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The Poisson-Gamma and the Poisson Log-Normal emerge as the models with the lower DIC 
values. The results of de suggest that the use of the multiplicative frailty component of the 
Poisson-Gamma model (see section 2.2.1) contributes to a decrease in around 3 effective 
parameters. However, taking into account the values in the second and third rows of Table 
20 it seems that the choice model is irrelevant as far as the DIC values are concerned. 
Therefore, since the Poisson Log-Normal model captures in a more satisfactorily way the 
data discrepancies (see Figure 48 and Figure 49) than the Poisson-Gamma model (see 
Figure 42 and Figure 43) and that the posterior means in Table 19 have smaller standard 
deviations values than the corresponding means in Table 16, it was decided to assume that 
the Poisson Log-Normal model provided a better fit of the Austrian junction data. 

Consequently, according to the Poisson Log-Normal, and observing the values in Figure 50, 
it can be concluded that the highest expected number of accidents occured on junctions with 
type „roundabout‟. This is an unexpected result as it has been found that roundabouts are 
especially safer than unsignalised junctions; nevertheless the fact that the Austrian data has 
zero accident junctions under represented might explain this result. 
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Figure 50 Values of the posterior means of the expected number of accidents for Austrian 
junctions classified per junction type and traffic control (as under column Mean in 
Table 19). 

 

The type of junctions with the highest expected number of injury accidents is the 
„roundabout‟, they are followed, by decreasing expected number of accidents, by junctions of 
type „X‟ and „Y‟. 

Within each of X and Y types of junctions the ones with higher expected values of accidents 
have yield as traffic control followed, by decreasing order of expected number of accidents, 
by the control categories of „stop‟ and „signalised‟. 

Overall, the safer junctions are the ones which are signalised and of type „Y‟. 

5 Modelling Portuguese injury accidents 

This chapter describes the data collected on Portuguese rural road networks junctions 
(section 5.1), proceeds with the description of the fit, assessment and checking of three 
Bayesian regression models including the Poisson (section 5.2), the hierarchical Poisson-
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Gamma (section 5.3) and the hierarchical Poisson Log-Normal model (section 5.4). The final 
section (5.5) summarises the results obtained for the chosen model. 

5.1 Portuguese Junction Data 

The data described in this section consists of several measurements registered on 257 
junctions belonging to the Portuguese rural road network. The data was collected over a five 
year period ranging from 2003 to 2007. Due to the low number of cases, staggered 
intersections and intersections with more than 4 approaches were removed from the sample. 

The variables registered included, per junction: 

 District_name: gives the name of the Portuguese district where the junction is 
situated; 

 Junction_Type: a categorical variable referring to the type of the junction, it 
takes the values „roundabout‟ or „intersection‟ (with three or four legs); 

 Number_of_Legs: a categorical variable indicating the number of legs in the 
junction, it takes the values „3‟, or „4‟; 

 Accidents: gives the number of injury accidents; 

 KSI_Acc: represents the number of accidents which resulted in killed or serious 
injured victims; 

 Killed_Acc: gives the number of accidents that resulted in at least one fatality; 

 AADTmaj: represents the major traffic entering volume (annual average daily 
traffic); 

 AADTmin: represents the minor traffic entering volume (annual average daily 
traffic). 

 

The dot plots displayed in Figure 51 show, in the y axis, the number of injury accidents 
(Accidents), accidents involving fatalities (Killed_Acc) and accidents involving fatalities or 
serious injury victims (KSI_Acc), per junction (the x axis gives the index of each junction) 
over the five year period of time. It can be observed the existence of one junction in which it 
has occurred 17 accidents (see upper left panel in Figure 51). There are also two junctions 
where two fatal accidents have occurred (upper right panel) and two junctions where three 
accidents produced killed or seriously injured victims (lower left panel). 

Another way of displaying this information is through the employment of bar plots which are 
shown in Figure 52. Where the y axis corresponds to the frequencies of each bar which in 
turn corresponds to 0, 1, 2, etc. number of each type of accidents. 
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Figure 51 Plots of the total number of Accidents, Killed_Acc, and KSI_Acc, per junction, from 
upper left to right, respectively, registered from 2003 to 2007 in Portuguese rural road 
network junctions. 
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Figure 52 Bar plots of the frequencies of Accidents, number of accidents involving fatalities 
and number of accidents involving killed and seriously injured victims registered from 
2003 to 2007 on Portuguese junctions from the rural road network. 
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The values of AADTmaj and AADTmin plotted against the total number of accidents are 
shown in Figure 53. The great majority of accidents occur at values of AADTmaj between 
2500 and 12000 (Figure 53, left panel) and for 243 to around 5000 for AADTmin (Figure 53, 
right panel). 
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Figure 53 The number of accidents per junction in the Portuguese data set against AADTmaj 
and AADTmin, and corresponding polynomial fits, on the left and right panels, 
respectively. 

 

The bar plots and the box plots of the two categorical variables are displayed in Figure 54 
and Figure 55, respectively. 
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Figure 54 Bar plots giving the frequencies of the number of junctions per categories of 
variables Junction_Type and Number_of_Legs, registered from 2003 to 2007 on 
Portuguese junctions from the rural road network. 

 

There are 76 junctions of type „roundabout‟ and 181 of type „intersection‟. There are also 181 
junctions with three legs and 76 with four legs. Nevertheless, there are 39 roundabouts with 
three legs and 37 with four legs. There are 142 junctions with type „intersection‟ having three 
legs and 39 with four legs. 
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Figure 55 Box plots of the number of accidents in the Portuguese junctions by group for 
Junction_Type and Number_of_Legs, on the left and right panels, respectively. 

 

From the observation of the box plots in Figure 55 it seems that there are not many 
differences between the median accident counts for the two types of junctions and also 
number of legs. The distributions of the injury accident counts for each type and number of 
legs are skewed to the right. 

Table 21 contains summary statistics of the variables measured over the sample of the 
Portuguese junctions. 

 

Table 21 Summary statistics for the variables registered on Portuguese junctions from 2003 to 
2007. 

Variables minimum mean standard 
deviation 

median maximum 

AADTmaj 743 6225.172 5547.6 3956 27530 

AADTmin 243 2894.6 3020.7 1606 19359 

Number_of_Legs 3 - - - 4 

Accidents 0 1.930 2.783 1 17 

Fatality_Acc 0 0.086 0.307 0 2 

KSI_Acc 0 0.253 0.581 0 3 

5.2 The Poisson regression model 

The Poisson regression model given by Equations 2.1 and 2.2 was fitted to the data with the 
number of injury accidents (Accidents) as the dependent variable and the logarithms of both 
AADTmaj and AADTmin, Number_of_Legs and Junction_Type as explanatory variables as 
shown in Equation 5.1. 

ln( î ) = β0 + β1ln(AADTmaji) + β2ln(AADTmini) + β3Number_of_Legsi + β4Junction_Typei    (5.1) 

The parameter ̂  gives the expected number of injury accidents for a period of one year. 

The   parameters were assigned Normal a priori distributions with mean 0 and variance 

10000. The baseline, or reference, categories for the categorical variables are: 
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Number_of_Legs = 3 

Junction_Type = „intersection’. 

The MCMC algorithm comprised three chains and was run for 35000 iterations of which 
33000 were considered burn-in, resulting in a thinning rate equal to 6. The results were 
drawn from samples with dimension 1002. 

The plots of the Gelman-Rubin statistics for the Poisson regression parameters are shown 
Figure 56. There is no evidence to suspect non-convergence to the pretended density for 
each parameter as the Rhat statistic tends to one and the remaining parameters stabilise as 
the number of iterations increase. 
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Figure 56 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson regression model fitted to the 
Portuguese junction accident data. 

 

The point estimates for the regression model as in Equation 5.1 are given in Table 22. These 
point estimates are given by the posterior means obtained for the distributions a posteriori of 
each parameter. 

 

Table 22 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson regression model was fit to 
the Portuguese accident data using a 3-leg of „intersection‟ type junction as baseline. 

Parameters mean s.d. MC error 2.5% 97.5% 

β0  -6.774 0.403 4.307E-02 -7.609 -6.058 

β1 (ln(AADTmaj)) 0.575 0.067 7.989E-03 0.454 0.701 

β2 (ln(AADTmin)) 0.119 0.061 7.332E-03 -0.002 0.239 

β3 (Number_of_Legs=‟4‟) 0.062 0.103 4.294E-03 -0.135 0.252 

β4 
(Junction_Type=´roundabout‟) 

-0.216 0.104 3.922E-03 -0.422 -0.014 

 

The Monte Carlo errors show relatively small values indicating that the parameter estimates 
were calculated with accuracy. Even though the 95% credible interval for the estimate of 2  

contains zero, the observation of the density for this estimated coefficient (see Figure 57) 
shows that zero falls in the tail of the distribution. Consequently, we can assume that 
ln(AADTmin) is relevant in the model. 

The coefficient estimates in Table 22 suggest that an increase in one unit of ln(AADTmaj) 
and ln(AADTmin) increases the expected accident frequencies by approximately 78% and 
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13%, respectively. The expected number of accidents on Portuguese junctions with 4 legs is 
expected to have around 6% more accidents than a junction with 3 legs while keeping the 
values of the other variables constant. 

Junctions of type „roundabout‟ are expected to have around 19% fewer accidents than 
junctions of type „intersection‟ (provided the remaining variables are kept constant). 

The posterior parameter estimates densities are shown in Figure 57. By examination of the 
graphs it can be concluded that the posterior densities of the coefficient estimates have 
shifted from the a priori distribution which was a Normal with mean zero and variance 10000. 
The means are now away from zero and the variances are much smaller. 
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Figure 57 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson regression model was fit to the Portuguese data. 

 

The predicted number of accidents after applying the Poisson regression model (Equation 
5.1) to the data is given by the equations shown in Table 23. Regardless of the number of 
legs, the junctions with type „roundabout‟ have the smaller number of expected injury 
accidents. Overall, the expected number of accidents is lower at 3 leg junctions when 
compared to 4 leg junctions. 

 

Table 23 Expected number of accidents per year for Portuguese junctions obtained by a 
Poisson regression model using a 3-leg „intersection‟ type junction as baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Junction_Type 

‟roundabout‟ 

„intersection‟ 

 

119.0574.04 min10206.9ˆ iii AADTAADTmaj  
 

119.0574.03 min10143.1ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Junction_Type 

‟roundabout‟ 

„intersection‟ 

 

119.0574.03 min10202.1ˆ iii AADTAADTmaj  
 

119.0574.03 min10216.1ˆ iii AADTAADTmaj  
 

5.2.1 Model Checking 

The histograms of the data replicated by the Poisson regression model (Figure 58) show that 
in most cases the model failed to replicate the higher frequencies of zero accidents as well 
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as some few junctions with higher frequencies of accidents (as the histogram of the observed 
data shows). 

Accidents

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 1

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 2

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 3

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 4

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 5

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 6

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 7

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 8

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 9

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 10

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 11

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 12

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 13

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 14

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0 Acc.rep 15

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 16

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 17

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 18

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

Acc.rep 19

F
re

q
u
e
n
c
y

0 5 10 15 20

0
1
0
0

2
0
0

 

Figure 58 Histogram of the observed number of accidents in Portuguese junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson regression model. 
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Figure 59 Dot plot of the observed number of accidents in Portuguese junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson regression model. 

 

It is evident from the dot plots that the number of modelled accidents (see Figure 59) remains 
constant throughout the junction set. This does not happen with the observed data where 
there are a few junctions which have higher number of injury accidents than the others. It can 
be concluded that the Poisson regression model does not seem to replicate the data 
properly. 

The four discrepancy measures plotted in Figure 60, together with the probabilities estimate 
that the replicated discrepancy is greater than the observed discrepancy, shows that the 
Poisson model does not seem to be able to capture the maximum value and the overall 
standard deviation of the data (p-values of zero or near zero). 

 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 93 of 159 

T(y)=max(y)

F
re

q
u
e
n
c
y

5 10 15 20
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

p= 0

T(y)=sum(y)

F
re

q
u
e
n
c
y

400 450 500 550 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

p= 0.502

T(y)=mean(y)

F
re

q
u
e
n
c
y

1.6 1.8 2.0 2.2

0
5
0

1
0
0

1
5
0 p= 0.502

T(y)=sd(y)

F
re

q
u
e
n
c
y

1.5 2.0 2.5 3.0
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0 p= 0

 

Figure 60 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson regression model fitted to the Portuguese data. 
The discrepancy measures T are: maximum, sum, mean and standard deviation (sd). 
The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 

 

The measure of the discrepancy used to check whether the model is taking the data‟s 
overdispersion into account is displayed in Figure 61. The estimated probability that the ratio 
of the variance to the mean in the replicated data is greater than the same ratio calculated 
from the observed data is equal to zero, strongly indicating that there is overdispersion 
present in the data. The Poisson regression model is not able to detect this and therefore 
cannot accurately replicate the observed data. Consequently, it leads to the conclusion that 
the Poisson model does not seem appropriate to represent the Portuguese junction data. 
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Figure 61 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson regression model fitted to the 
Portuguese data, for the same measure. The p gives the estimated probability that the 
measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 

 

This model produces an average deviance, D , of 1115.730 and an effective model 
dimension, de, of 4.527, giving a DIC of 1120.260. These results will be used for model 
comparison which is described in section 5.5. 

5.3 The Poisson-Gamma hierarchical regression model 

The Poisson-Gamma regression model was fitted using the Equations 2.3 and 2.4 with    

and  ~Gamma(a,a) where a=0.1. Equation 5.1 was applied and the   parameters were 

given a priori Normal distributions with mean zero and variance 10000. 

The MCMC algorithm comprised three chains and was run for 35000 iterations with 33000 
burn-in and resulting in a thinning rate equal to 6. The results were obtained from samples 
with size 1002. 

The graphs of the Gelman-Rubin statistics for the estimates of the model parameter 
estimates are displayed in Figure 62 and in all of them it can be observed that the Rhat 
statistic (red line) converges to the value 1 and the remaining ones stabilize around 1. This 
indicates that there seems to be no reasons to doubt that non-convergence has occurred. 
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Figure 62 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson-Gamma regression model fitted to the 
Portuguese junction accident data. 

 

Apart from the more dubious case of the estimate of the 2  coefficient, there seems to be no 

reason to doubt the non-convergence of the algorithm. 

The point estimates and further statistics are displayed in Table 24. The credible interval for 
the estimates of 2 , 3  and 4  contain zero but fall within the tail of the distribution and the 

acceptable limits as can be seen in Figure 63. 

 

Table 24 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson-Gamma regression model was 
fit to the Portuguese accident data using a 3-leg „intersection‟ type junction as 
baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -5.917 0.395 5.409E-02 -6.373 -5.046 

β1 (ln(AADTmaj)) 0.558 0.083 1.127E-02 0.420 0.697 

β2 (ln(AADTmin)) 0.022 0.083 1.130E-02 -0.123 0.170 

β3 (Number_of_Legs=‟4‟) 0.255 0.164 2.197E-02 -0.092 0.543 

β4 
(Junction_Type=´roundabout‟) 

-0.296 0.194 2.606E-02 -0.604 0.057 

 

From the examination of the point mean estimates it can be stated that, according to this 
particular Poisson-Gamma model, every unitary increase in ln(AADTmaj) increases the 
expected frequency of accidents in approximately 75% (and assuming that all the other 
explanatory variables remain constant). An increase in one unit of ln(AADTmin) increases 
the expected frequency of accidents in around only 2%. See example on section 3.2. 

Junctions with four legs have approximately 29% higher expected number of injury accidents 
when compared with junctions with three legs (provided the remaining variables have been 
kept constant). Junctions of type „roundabout‟ have approximately 26% lower expected 
accident frequencies when compared with junctions of type „intersection‟. 

The posterior densities of the   estimated coefficient parameters are displayed in Figure 63. 

The densities have deviated considerably from the Normal a priori distribution. 
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Figure 63 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson-Gamma regression model was fit to the Portuguese data. 

 

The expected accident frequencies for a one year period are given by equations displayed in 
Table 25 for the various numbers of legs and junction‟s types. 

 

Table 25 Expected number of accidents per year for Portuguese junctions obtained by a 
Poisson-Gamma regression model using a 3-leg „intersection‟ type junction as 
baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Junction_Type 

‟roundabout‟ 

„intersection‟ 

 

022.0558.03 min10003.2ˆ iii AADTAADTmaj  
 

022.0558.03 min10694.2ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Junction_Type 

‟roundabout‟ 

„intersection‟ 

 

022.0558.03 min10586.2ˆ iii AADTAADTmaj  
 

022.0558.03 min10476.3ˆ iii AADTAADTmaj  
 

 

In general, the model detected that the junctions with 4 legs have a slightly higher expected 
injury accident frequency than junctions with 3 legs. Regardless of the number of legs, the 
junctions with type „intersection‟ have higher numbers of expected accidents than junctions 
with type „roundabout‟. In all cases 3-leg junctions have fewer predicted accidents than 4 leg 
junctions. 

5.3.1 Model Checking 

The graphs of nineteen replicated data sets are depicted as histogram in Figure 64 and, for a 
further set of 19 replicated data in Figure 65, as dot plots. They all show that the observed 
data looks plausible amongst the replicated data (see Gelman et al., 2004) and that the 
Poisson-Gamma model seems to be able to adequately replicate most of the features of the 
observed data. 
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Figure 64 Histogram of the observed number of accidents in Portuguese junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson-Gamma regression model. 
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Figure 65 Dot plot of the observed number of accidents in Portuguese junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson-Gamma regression model. 

 

The discrepancy measures max, sum, mean and sd calculated from the observed data and 
replicated data are displayed in Figure 66. It can be seen that the observed values lie inside 
the histograms of the replicated data and that the corresponding probabilities are all close to 
0.5 which indicates that the Poisson-Gamma model is replicating the data properly and 
capturing the variations that were calculated. An equivalent conclusion can be drawn when 
considering the ratios of the variances over the mean to check whether the model takes into 
account the data overdispersion with a p-value of 0.503 (see Figure 67). 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 99 of 159 

T(y)=max(y)

F
re

q
u
e
n
c
y

10 15 20 25 30 35 40
0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

p= 0.648

T(y)=sum(y)

F
re

q
u
e
n
c
y

400 450 500 550 600

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

p= 0.53

T(y)=mean(y)

F
re

q
u
e
n
c
y

1.6 1.8 2.0 2.2

0
5
0

1
0
0

1
5
0

p= 0.53

T(y)=sd(y)

F
re

q
u
e
n
c
y

2.5 3.0 3.5
0

5
0

1
0
0

1
5
0

p= 0.514

 

Figure 66 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson-Gamma regression model fit to the Portuguese 
data. The discrepancy measures T are: maximum, sum, mean and standard deviation 
(sd). The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 
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Figure 67|   Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson-Gamma regression model fit to the 
Portuguese data, for the same measure. The p gives the estimated probability that the 
measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 

 

This model produces an average deviance, D , of 672.284 and an effective model 
dimension, de, of 113.426, giving a DIC of 785.710. The dispersion parameter ( /1  in 
Equation 2.4) was estimated as 1.155. This suggests that the Poisson-Gamma model 
adequately replicates the Portuguese junction data. 
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The posterior means and corresponding standard deviations for the expected numbers of 
accidents for a one year period are given in Table 26 for the minimum, mean, median and 
maximum profiles, and for the various types of junctions and number of legs. 

 

Table 26 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson-Gamma regression 
model for the Portuguese accident data. 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 6.611 8.370 8.283 10.223 

 ln(AADTmin) 5.493 7.506 7.382 9.871 

Junction_Type Number_of_Legs mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

roundabout 3 0.094 

(0.025) 

0.258 

(0.050) 

0.246 

(0.049) 

0.763 

(0.134) 

 
4 

0.120 

(0.025) 

0.330 

(0.045) 

0.314 

(0.043) 

0.980 

(0.139) 

intersection 3 0.123 

(0.014) 

0.343 

(0.033) 

0.326 

(0.031) 

1.027 

(0.181) 

 
4 

0.160 

(0.026) 

0.447 

(0.078) 

0.425 

(0.074) 

1.343 

(0.318) 

 

For a typical 4 leg junction with type „intersection‟ one expects 0.447 accidents in one year, 
while a typical „roundabout‟ junction with three legs is expected to have 0.258 accidents per 
year. 

The worst case scenario (corresponding to the maximum profile) where junctions have 
AADTmaj and AADTmin of approximately 27529 and 19360, respectively, corresponds to an 
expected number of 1.343 accidents for junctions of type ‘intersection’ and four legs. 

5.4 The Poisson Log-Normal regression model 

The Poisson Log-Normal regression model was fitted to the data according to Equations 2.5 
and 2.6 (in Chapter 2) where the parameter   in Equation 2.6 had an a priori Gamma 

distribution with parameter a equal to 0.001. 

The MCMC algorithm was run with three chains for 35000 iterations of which 33000 were 
burn-in and a thinning rate equal to 6. The results and conclusions were drawn from a 
sample with dimension 1002. 

The Gelman-Rubin statistics were plotted for the estimates of the regression coefficients and 
are displayed in Figure 68. From the observation of those plots it can be stated that there are 
no reasons to believe that the algorithm does not converge, as for most of the parameter 
estimates considered the Rhat statistic converges to 1 and the remaining statistics stabilise 
as the number of iterations increase. 
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Figure 68 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters from the Poisson Log-Normal regression model fitted to 
the Portuguese junction accident data. 

 

The posterior means of the parameter estimates, corresponding standard deviations, Monte 
Carlo errors and 95% credible intervals are shown in Table 27.  

From the values in Table 27 it can be stated that every unitary increase in ln(AADTmaj) 
increases the expected number of accidents by approximately 84%, provided the other 
explanatory variables remain constant. An increase in one unit of ln(AADTmin) increases the 
expected frequency of injury accidents by around 15%. See example on section 3.2. 

A junction with four legs is a posteriori expected to have approximately 9% more accidents 
than a junction with three legs (with the remaining explanatory variables constant). 

A junction of type „roundabout‟ is a posteriori expected to have approximately less 26% injury 
accidents than a junction of type „intersection‟. 

 

Table 27 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson Log-Normal regression model 
was fit to the Portuguese accident data using a 3-leg of „intersection‟ type junction as 
baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -7.723 1.291 1.724E-01 -9.843 -4.673 

β1 (ln(AADTmaj)) 0.609 0.202 2.726E-02 0.172 0.892 

β2 (ln(AADTmin)) 0.142 0.148 1.998E-02 -0.075 0.474 

β3 (Number_of_Legs=‟4‟) 0.083 0.212 1.304E-02 -0.365 0.469 

β4 
(Junction_Type=´roundabout‟) 

-0.302 0.221 1.432E-02 -0.769 0.119 

 

The MC errors have comparatively smaller values than the standard deviations thus 
indicating that the parameter estimates were calculated with accuracy. 

The 95% credible intervals for some parameter estimates contain zero, however, from the 
observation of the parameter estimate densities in Figure 69 it is evident that zero lies on the 
tails of the densities (i.e. quite away from the mean), with the exception of the estimate 
corresponding to 3  (coefficient for variable Number_of_Legs=‟4‟) which may suggest that 

this categorical variable is not relevant in the model. However, it was decided to keep this 
variable so that comparisons between models for different countries could be made. 
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Figure 69 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after a Poisson Log-Normal regression model was fit to the Portuguese data. 

 

The equations giving the expected injury accident frequency, per year and per number of 
legs and junction type, are given in Table 28. 

 

Table 28 Expected number of accidents per year for Portuguese junctions obtained by a 
Poisson Log-Normal regression model using a 3-leg of „intersection‟ type junction as 
baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Junction_Type 

‟roundabout‟ 

„intersection‟ 

 

142.0609.04 min10274.3ˆ iii AADTAADTmaj  
 

142.0609.04 min10427.4ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Junction_Type 

‟roundabout‟ 

„intersection‟ 

 

142.0609.04 min10559.3ˆ iii AADTAADTmaj  
 

142.0609.04 min10812.4ˆ iii AADTAADTmaj  
 

 

Overall, the junctions with 3 legs have only a slightly lower expected accident frequency than 
junctions with 4 legs. Regardless of the number of legs, junctions of type „intersection‟ have 
higher expected accident frequency than junctions of type „roundabout‟. 

5.4.1 Model Checking 

The observation of both Figure 70 and Figure 71 show that the various histograms and dot 
plots of replicated data resemble the observed data and hence it can be stated that the 
Poisson Log-Normal model seems to be able to adequately replicate the observed data. 
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Figure 70 Histogram of the observed number of accidents in Portuguese junctions (left upper 
corner, in grey) and 19 histograms of replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Log-Normal regression model. 
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Figure 71 Dot plot of the observed number of accidents in Portuguese junctions (left upper 
corner, in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the numbers 
of accidents obtained by the posterior predictive distribution according to the 
Poisson Log-Normal regression model. 

 

The Poisson Log-Normal model also seems to be able to capture variations in the 
Portuguese junction data as exemplified by the four discrepancy measures whose values are 
displayed in Figure 72. In all of the four discrepancy measures considered, the histograms of 
the frequencies of the measured discrepancies in various sets of replicated data surround 
the observed value (represented by a vertical line in the plots). The probability that the 
measures obtained with the replicated data are greater than the observed measure is near 
0.5 for nearly all of the four discrepancy measures, therefore indicating that the model in 
question captures these variations of the observed data reasonably well. 
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Figure 72 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson Log-Normal regression model fit to the Portuguese 
data. The discrepancy measures T are: maximum, sum, mean and standard deviation 
(sd). The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 

 

The plot depicted in Figure 73 shows that the Poisson log-Normal regression model applied 
takes the overdispersion of the data into account by being able to replicate it. 
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Figure 73 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson Log-Normal regression model fit to 
the Portuguese data, for the same measure. The p gives the estimated probability that 
the measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 
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This model produces an average deviance, D , of 691.848 and an effective model 
dimension, de, of 131.586, giving a DIC of 823.434. The dispersion parameter ( /1  in 

Equation 2.6) was estimated as 1.091. These quantities are used for model comparison, 
which is discussed in more detail in section 5.5. 

The expected accident frequency for the three types of junctions and for three and four 
approaches, for the minimum, mean, median and maximum profiles of the explanatory 
variables are displayed in Table 29. For a typical junction with type „roundabout‟ and 3 
approaches the predicted accident frequency for a one year period is 0.160 injury accidents. 
For a junction with 4 legs (intersection) 0.233 accidents per year are predicted. 

 

Table 29 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson Log-Normal regression 
model for the Portuguese accident data. 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 6.611 8.370 8.283 10.223 

 ln(AADTmin) 5.493 7.506 7.382 9.871 

Junction_Type Number_of_Legs mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

roundabout 3 0.044 

(0.020) 

0.160 

(0.035) 

0.149 

(0.034) 

0.702 

(0.211) 

 
4 

0.048 

(0.023) 

0.174 

(0.040) 

0.162 

(0.039) 

0.756 

(0.198) 

intersection 3 0.057 

(0.019) 

0.212 

(0.027) 

0.198 

(0.026) 

0.957 

(0.306) 

 
4 

0.063 

(0.023) 

0.233 

(0.046) 

0.218 

(0.044) 

1.042 

(0.336) 

 

The worst case scenario (corresponding to the maximum profile) is obtained for the 
maximum values of ln(AADTmaj) and ln(AADTmin) and corresponds to an expected number 
of injury accidents of 1.042 in a one year period in junctions of type „intersection‟ with 4 legs. 

5.5 Discussion 

Table 30 contains the resulting fit ( D ), complexity (de) and overall model choice (DIC) score 
for the three models fitted to the Portuguese data. 

 

Table 30 Comparison of DIC and related statistics for the three models fitted to the Portuguese 
junction data. 

Regression Model D  de DIC 

Poisson 

Poisson-Gamma 

Poisson Log-Normal 

1115.730 

672.289 

691.848 

4.527 

113.426 

131.586 

1120.260 

785.710 

823.434 

 

The Poisson regression model was already seen not to be appropriate to model the 
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Portuguese junction data as it does not replicate conveniently the observed data and does 
not take the overdispersion into account. 

The Poisson-Gamma emerges as the model with the lower DIC value (see value in Table 
30). It has also the smaller de (effective parameter dimension) when comparing with the 
Poisson Log-Normal model. Since the Poisson-Gamma model obtained also the best results 
when checking for the data discrepancy measures it was decided to present its results as the 
overall conclusions of the Portuguese junction‟s analysis. 
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Figure 74 Values of the posterior means of the expected number of accidents for Portuguese 
junctions classified per junction type and number of legs (as under column Mean in 
Table 26). 

 

Therefore, from the observation of the plot displayed in Figure 74 (whose values were taken 
from the fourth column in Table 26) it can be stated that the highest value of the expected 
numbers of injury accidents are obtained on 4 leg intersection type junctions. The lowest 
value is obtained on 3 leg roundabout junctions. This result is the opposite of the one 
obtained with the Austrian data, being the former a more expected result and in line with 
international research findings. The equations giving the number of expected accident 
frequencies for the Poisson-Gamma model are displayed in Table 25. 

6 Modelling Austrian, Norwegian and Portuguese injury 
accidents 

This chapter describes the combined analysis of the set of data formed after joining the 
junction data sets from the three countries (Austria, Norway and Portugal) described in 
previous chapters. The junctions analysed and described in chapters 3, 4 and 5 were joined 
together with their corresponding number of accidents and AADT values and described in 
section 6.1. 

The assessment of the results obtained for the Poisson, Poisson-Gamma and Poisson Log-
Normal regression models which were fitted to the new set of aggregated data is described 
in this chapter in section 6.2, 6.3 and 6.4. Section 6.5 summarises the results and 
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conclusions obtained. 

6.1 Aggregated Junction Data 

The aggregated junction data was formed by joining the rural junction data sets from Austria, 
Norway and Portugal and the new aggregated data is formed by 1208 junctions. The 
variables that could be aggregated from all three countries included the following: 

 Accidents: gives the number of injury accidents; 

 AADTmaj: represents the major entering volume traffic (annual average daily 
traffic); 

 AADTmin: represents the minor entering volume traffic (annual average daily 
traffic). 

 

The plots shown in Figure 75 depict the number of accidents per junction and per country 
(left panel in Figure 75 where the three colours represent the three countries) and the 
frequency of the total number of accidents (panel on the right). 
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Figure 75 Plot of Accidents, per junction, registered in the aggregated rural road network 
junctions (on the left) and the histogram giving the frequency of the number of 
accidents (on the right). 

 

Note that the data were measured on different time periods for each country but are now 
aggregated. However, the analysis described in this chapter takes the period of time of the 
measurements into account so that the results correspond to a one year period. 

The plots shown in Figure 76 represent the graphs of AADTmaj and AADTmin plotted 
against the number of accidents on the left and right, respectively. It is evident to notice that 
some junctions have higher values of either AADTmaj or AADTmin, which has no doubtly 
influenced the fitted smooth regression shown on the plots. However, since the aim of these 
smooth regressions was to help in visualising these particular graphs it was decided not to 
pursue further investigations on those junctions. 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 109 of 159 

0 10000 20000 30000 40000

0
5

1
0

1
5

2
0

AADTmaj

N
u

m
b

e
r 

o
f 
A

c
c
id

e
n

ts
 p

e
r 

J
u

n
c
ti
o

n

Austria (4yrs)

Norway (6 yrs)

Portugal (5 yrs)

          

0 5000 10000 15000 20000

0
5

1
0

1
5

AADTmin

N
u

m
b

e
r 

o
f 
A

c
c
id

e
n

ts
 p

e
r 

J
u

n
c
ti
o

n

Austria (4yrs)

Norway (6 yrs)

Portugal (5 yrs)

 

Figure 76 The number of accidents on the aggregated data set against AADTmaj and 
AADTmin, on the left and right panels, respectively, and corresponding polynomial 
fits. 

 

The fitted smooth regression curve increases with increasing AADTmaj but tends to stabilise 
as AADTmin increases. The great majority of accidents occur for values of AADTmaj 
between 133 and 15000 and 7 to 7000 for AADTmin. 

Table 31 displays summary descriptive statistics for the variables belonging to the 
aggregated data set. 

 

Table 31 Summary statistics for the variables registered on the aggregated junctions. 

Variables minimum mean standard 
deviation. 

median maximum 

AADTmaj 133 4778.19 4530.90 3293 38875 

AADTmin 7 1197.93 1946.28 560 19359 

Accidents 0 1.029 1.825 0 17 

6.2 The Poisson regression model 

The Poisson regression model given by Equations 2.1 and 2.2 in chapter 2 was fitted to the 
data with Accidents as the dependent variable and the natural logarithms of AADTmaj and 
AADTmin as independent variables as is shown in Equation 6.1. 

ln( î ) = β0 + β1ln(AADTmaji) + β2ln(AADTmini)               (6.1) 

The   parameters were assigned Normal a priori distributions with mean zero and variance 

10000. The MCMC algorithm consisted on three chains and was run for 9000 iterations with 
6000 as burn-in and a thinning rate equal to 9. The results are obtained from samples with a 
dimension of 1002. 
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Figure 77 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters obtained after the Poisson regression model was fit to the 
aggregated data set. 

 

From observing the plots of the Gelman-Rubin statistics displayed in the graphs in Figure 77, 
it is reasonable to conclude that there are no reasons to doubt the non-convergence of the 
MCMC algorithm. 

The point estimates of the Poisson regression model are given in Table 32. The 95% 
credible intervals for the estimates of the non-categorical independent variables do not 
include zero, therefore indicating that the variables ln(AADTmaj) and ln(AADTmin) have a 
relevant effect when predicting the number of accidents. 

 

Table 32 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson regression model was fit to 
the aggregated data set. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0 -9.165 0.312 3.453E-02 -9.785 -8.577 

β1 (ln(AADTmaj)) 0.651 0.041 4.553E-03 0.580 0.734 

β2 (ln(AADTmin)) 0.305 0.024 2.026E-03 0.258 0.355 

 

The posterior densities of the parameter estimates are given in Figure 78. The mean values 
have shifted away from the a priori mean value of zero for the three estimates. 
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Figure 78 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after the Poisson regression model was fit to the aggregated junction data. 

 

The equation for the expected number of accidents for a one year period in the aggregated 
data set is given by: 

305.0651.04 min10046.1ˆ AADTAADTmaj                  (6.2) 

Every increase in a unit of ln(AADTmaj) increases the expected number of accidents by 92% 
(provided the ln(AADTmin) is constant), whereas an increase in a unit of ln(AADTmin) 
increases the expected number of accidents by approximately 36%. For the meaning of 
unitary increase see example in section 3.2. 
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6.2.1 Model Checking 

Figure 79 contains the histogram of the observed data (in the upper left panel) and nineteen 
histograms of data replicated by the Poisson model obtained. From the observation of these 
histograms it can be seen that the replicated data does not assume high values for the 
accidents, i.e., values between 10 and 17 (which were present in the observed data and are 
represented by a thin horizontal line in the grey histogram). 

This fact is better observed in the plots displayed in Figure 80. The observed data (upper left 
plot in grey) has considerable higher numbers of accidents in the first and last group of 
variables, which the Poisson model does not seem to be replicating. 
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Figure 79 Histogram of the observed number of accidents in the aggregated data set (first 
row on the left in grey) and 19 histograms of replicated data set (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson regression model. 
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Figure 80 Dot plot of the observed number of accidents in the aggregated data set (first row 
on the left in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson regression model. 

 

The number of accidents replicated seemed to vary in a constant way in the 0 to 10 range (y-
axis). 

The four plots of the discrepancy measures are displayed in Figure 81. It can be seen that 
the Poisson regression model seems to capture the variations corresponding to the sum and 
mean values (with estimated probabilities of 0.5), but does not capture the maximum and 
standard deviation values of the observed data. 

The measure of discrepancy suggested by Congdon (2005) to check whether overdispersion 
is taken into account is displayed in Figure 82. 
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Figure 81 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson regression model fitted to the aggregated data. 
The discrepancy measures T are: maximum, sum, mean and standard deviation (sd). 
The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 

 

The Poisson model does not seem to be taking the overdispersion of the observed data into 
account as the ratio of the variance to the mean in the observed data (given by the straight 
line) is considerably greater than any of the ratios obtained by the 1002 replicated sets of 
data (given by the histogram) with an estimated probability equal to zero. 
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Figure 82 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson regression model fitted to the 
aggregated data, for the same measure. The p gives the estimated probability that the 
measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 
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Consequently, the Poisson regression model does not seem to be adequate to model the 
aggregated junction data. 

This model produces an average deviance, D , of 3340.570 and an effective model 
dimension, de, of 3.059, giving a DIC of 3343.630. 

6.3 The Poisson-Gamma hierarchical regression model 

The Poisson-Gamma hierarchical regression model was fit to the aggregated data set 
according to Equations 2.3 and 2.4 in chapter 2. The parameters   and   were such that 

   and ),(~ baGamma  with a=1 and b=0.01. The expression given by Equation 6.1 was 

applied and the   parameters were given a priori Normal distributions with mean 0 and 

precision 0.0001 (variance is equal to the inverse of the precision). 

The MCMC algorithm comprised 3 chains and was run for 35000 iterations of which 20000 
were burn-in and a thinning rate of 45 resulting in samples with dimension 1002. 

The Gelman-Rubin graphs in Figure 83 show evidence to believe the convergence of the 
MCMC algorithm. 
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Figure 83 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters obtained after the Poisson-Gamma hierarchical 
regression model was fit to the aggregated data set. 

 

The point estimates for the Poisson-Gamma fit are given in Table 33. The impact of both 
independent variables is significant as the 95% credible intervals do not contain the value 
zero. 

 

Table 33 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson-Gamma regression model was 
fit to the aggregated data set. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -9.891 0.406 5.406E-02 -10.710 -9.218 

β1 (ln(AADTmaj)) 0.689 0.051 6.436E-03 0.586 0.777 

β2 (ln(AADTmin)) 0.369 0.037 3.678E-03 0.305 0.450 

 

The posterior densities for the   coefficient estimates are displayed in Figure 84. 
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Figure 84 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after the Poisson-Gamma hierarchical regression model was fit to the 
aggregated junction data. 

 

The equation giving the expected accident frequency for a one year period in junctions from 
the aggregated data set is: 

369.0689.05 min10063.5ˆ AADTAADTmaj                  (6.3) 

It can be stated that an increase in one unit in ln(AADTmaj) (and keeping ln(AADTmin) 
constant) increases the expected number of accidents by 99%. The same increase in 
ln(AADTmin), with constant ln(AADTmaj) increases the expected number of accidents by 
45%. See explanation of unit increase in section 3.2. 

6.3.1 Model Checking 

A comparisson of the predicted and observed accident data using the Poisson Gamma 
regression are shown in the histograms in Figure 84. These reveal that the modelled data 
are comparable to the observed data. The model seems to replicate observed data in 
especially the higher ranges much better than the Poisson model (see section 6.2). 

The same conclusion can be drawn from the observation of the dot plots in Figure 86, where 
it is possible to observe that the modelled data sets have higher values for the first and last 
sets of junctions with spikes in the middle, therefore replicating realistically the observed 
data. 
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Figure 85 Histogram of the observed number of accidents in the aggregated data set (first 
row on the left in grey) and 19 histograms of replicated data set (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson-Gamma hierarchical regression model. 
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Figure 86 Dot plot of the observed number of accidents in the aggregated data set (first row 
on the left in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson-Gamma hierarchical regression model. 

 

The plots of the discrepancy measures are displayed in Figure 87. 

All four variations seem to be captured by the Poisson-Gamma model. The same conclusion 
can be drawn from the observation of the discrepancy measure employed to check whether 
the model is taking the data overdispersion into account and displayed in Figure 88. 
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Figure 87 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson-Gamma regression model fitted to the aggregated 
data. The discrepancy measures T are: maximum, sum, mean and standard deviation 
(sd). The p is the estimated probability that the measures obtained by the posterior 
predictive distributions are greater than the ones obtained by the observed data. 

 

The estimated probability that the ratio of the variance to the mean in the replicated data is 
greater than the equivalent ratio calculated from the observed data is now equal to 0.650 and 
this is well within the limits stated by Congdon (2005). 
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Figure 88 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson-Gamma regression model fit to the 
aggregated data, for the same measure. The p gives the estimated probability that the 
measure obtained by the posterior predictive distributions is greater than the one 
obtained by the observed data. 
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This model produces an average deviance, D , of 2406.570 and an effective model 
dimension, de, of 336.781, giving a DIC of 2743.350. The estimated dispersion parameter 
( /1 ) was equal to 0.842. These values characterise the model, being some of them used for 
model comparison (discussed in section 6.5). 

The expected numbers of accidents for a one year period for the aggregated junctions for the 
minimum, mean, median and maximum profiles were calculated. The posterior means and 
the corresponding standard deviations of these profiles are provided in Table 34. 

 

Table 34 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson-Gamma regression 
model for the aggregated accident data. 

 Minimum Mean Median Maximum 

ln(AADTmaj) 4.890 8.054 8.100 10.568 

ln(AADTmin) 1.946 6.244 6.328 9.871 

 mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

Expected Number 
of Accidents 

0.003 

(5.975E-04) 

0.130 

(0.006) 

0.139 

(0.006) 

2.827 

(0.378) 

 

A typical junction belonging to the aggregated data set is expected to have 0.130 accidents 
in a one year period. 

6.4 The Poisson Log-Normal regression model 

The Poisson Log-Normal regression model was fitted to the aggregated data according to 
Equations 2.5 and 2.6 (Chapter 2) where the parameter   in Equation 2.6 followed a 

Gamma(a,b) a priori distribution with a=1 and b=0.01. 

The MCMC algorithm was run with three chains for 35000 iterations with 20000 as burn-in 
with a thinning rate of 45. The results were drawn from samples with dimension 1002. 

The Gelman-Rubin statistics corresponding to the estimated coefficient parameters from 
Equation 6.1 are plotted against the iterations and displayed in Figure 89. From observation 
of those graphs it is concluded that there are no reasons to suspect of non-convergence of 
the iterative simulation. 
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Figure 89 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters obtained after the Poisson Log-Normal hierarchical 
regression model was fitted to the aggregated data set. 

 

The posterior means of the parameter estimates, corresponding standard deviations, Monte 
Carlo standard errors and 95% credible intervals are displayed in Table 35. The MC errors 
have small values indicating that the parameter estimates were calculated with precision. 
The 95% credible intervals do not contain zero for any parameter estimate, meaning that the 
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corresponding variable is relevant in the model. 

Table 35 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson Log-Normal regression model 
was fitted to the aggregated data set. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -10.080 0.424 3.277E-02 -10.930 -9.223 

β1 (ln(AADTmaj)) 0.672 0.056 4.833E-03 0.555 0.783 

β2 (ln(AADTmin)) 0.363 0.035 2.141E-03 0.294 0.431 

 

The mean posterior estimates indicate that the every increase in ln(AADTmaj) increases the 
expected number of accidents by approximately 96%, provided ln(AADTmin) remains 
constant. An increase in one unit of ln(AADTmin) increases the expected frequency of 
accidents in around 44%. 

The parameters estimate densities are displayed in Figure 90. 
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Figure 90 Posterior densities of the coefficients corresponding to the beta parameters 
obtained after the Poisson Log-Normal hierarchical regression model was fitted to the 
aggregated junction data. 

 

The equation giving the expected number of accidents for a one year period for the 
aggregated data is the following: 

363.0672.05 min10191.4ˆ AADTAADTmaj                  (6.3) 

6.4.1 Model Checking 

Figure 91 contains histograms from a sample of the Poisson Log-Normal replicated data. In 
general these histograms resemble the histogram of the observed data, which indicates that 
the model seems able to replicate the observed data, also in the higher ranges. 
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Figure 91 Histogram of the observed number of accidents in the aggregated data set (first 
row on the left in grey) and 19 histograms of replicated data set (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson Log-Normal hierarchical regression model. 

 

An equivalent conclusion can be drawn from observing the dot plots in Figure 92 which were 
obtained from a further sample of nineteen replicated data sets. 
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Figure 92 Dot plot of the observed number of accidents in the aggregated data set (first row 
on the left in grey) and 19 dot plots from replicated data sets (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson Log-Normal regression model. 

 

All the replicated data sets mimick the number of accidents on the first and third batch of 
junctions (they are slightly higher than the number of accidents of the junctions in between) 
and therefore reproducing the observed data (which has higher numbers of accident 
occurrences in Austria and Portugal and fewer in Norway). 

The discrepancy measures (Figure 93) show that the model also captures the variations that 
these measures indicate. The probabilities that the discrepancy measures obtained by the 
replicated data are greater than the corresponding discrepancy measure from the observed 
data lie within the satisfactory boundaries of 0.1 to 0.9 as suggested by Congdon (2005). The 
p values are also near 0.5 for all the discrepancies. 
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Figure 93 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson Log-Normal regression model fitted to the 
aggregated data. The discrepancy measures T are: maximum, sum, mean and 
standard deviation (sd). The p is the estimated probability that the measures obtained 
by the posterior predictive distributions are greater than the ones obtained by the 
observed data. 

 

The verification of the measure of discrepancy suggested by Congdon (2005) to check 
whether the model takes the data overdispersion into account is depicted in Figure 94. It can 
be concluded that the Poisson Log-Normal is taking the overdispersion of the aggregated 
data into account. 

T(y)= ratio of variance to mean

F
re

q
u

e
n

c
y

3.0 3.5 4.0 4.5

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

p= 0.71

 

Figure 94 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson Log-Normal regression model fitted 
to the aggregated data, for the same measure. The p gives the estimated probability 
that the measure obtained by the posterior predictive distributions is greater than the 
one obtained by the observed data. 
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This model produces an average deviance, D , of 2437.680 and an effective model 
dimension, de, of 373.785, giving a DIC of 2811.460. The comparisons between the models 
will be discussed in section 6.5. 

 

Table 36 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson Log-Normal regression 
model for the aggregated accident data. 

 Minimum Mean Median Maximum 

ln(AADTmaj) 4.890 8.054 8.100 10.568 

ln(AADTmin) 1.946 6.244 6.328 9.871 

 mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

Expected 
Number of 
Accidents 

0.002 

(4.712E-04) 

0.090 

(0.005) 

0.096 

(0.005) 

1.837 

(0.226) 

 

The posterior means and corresponding standard deviations for the minimum, mean, median 
and maximum profiles of ln(AADTmaj) and ln(AADTmin) for the aggregated set of junctions 
are provided in Table 36. A typical junction is expected to have 0.090 accidents during a one 
year period. For a maximum profile of ln(AADTmaj) and ln(AADTmin) any given junction is 
expected to have 1.837 accidents per year. 

6.5 Discussion 

The values of DIC and de shown in Table 37 for the three models considered in this chapter 
suggest that the model exhibiting the better fit and having a smaller degree of parsimony is 
the Poisson-Gamma regression model. Since this model also provided good results when 
the procedures for model checking were calculated (see Figure 85 to Figure 88) it can 
therefore be chosen as the model that best fits the aggregated data for the three countries. 

 

Table 37 Comparison of DIC and related statistics for the three models fitted to the aggregated 
junction data. 

Regression Model D  de DIC 

Poisson 

Poisson-Gamma 

Poisson Log-Normal 

3341 

2407 

2438 

3.059 

336.781 

373.785 

3344 

2743 

2811 

7 Modelling Austrian, Norwegian and Portuguese injury 
accidents on non-roundabout junctions 

This chapter describes the combined analysis of the set of data formed after joining the three 
junction data sets (excluding the roundabouts) from Austria, Norway and Portugal. The 
analysis and the results obtained for the Poisson-Gamma and Poisson Log-Normal models 
are described in sections 7.2 and 7.3, respectively. In this chapter, and the following, it was 
decided to discard the Poisson model as this model does not seem to give appropriate fits on 
the accident data collected in the various countries analysed. 
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Section 7.4 finalises with a discussion. 

7.1 Aggregated Junction Data (excluding roundabouts) 

The data analysed in this chapter consists of 1087 junctions on the rural road network where 
174 belong to Austria, 732 to Norway and 181 to Portugal. 

The variables considered (note that there are no signalised roundabouts in Portugal nor data 
on traffic control measurements from Norway) included, per junction: 

 Accidents: gives the number of injury accidents; 

 AADTmaj: represents the major traffic entering volume (annual average daily 
traffic); 

 AADTmin: represents the minor traffic entering volume (annual average daily 
traffic). 

 Number_of_Legs: a binary (categorical) variable indicating whether the junction 
was formed by “3” or “4” legs; 

 Country: a categorical variable indicating the country where the junction was 
registered (“1” if Austria, “2” if Norway and “3” if Portugal). 

 

The graphs in Figure 95 show the plot of variable Accidents per junction and per country 
(with different colours) on the left and the histogram of the same variable on the right. 
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Figure 95 Plot of Accidents, per junctions, registered in the aggregated rural road network 
junctions excluding the roundabouts (on the left) and the histogram of the frequency 
of Accidents (on the right). 

 

The number of injury accidents plotted against AADTmaj and AADTmin, together with a 
polynomial fit is depicted in the two graphs in Figure 96. The majority of the injury accidents 
occur for values of between 133 to 10000 vehicles per day for AADTmaj and 7 to 3000 
vehicles per day for AADTmin. 
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Figure 96 The number of accidents per junction in the aggregated data set, excluding the 
roundabouts, against AADTmaj and AADTmin, and corresponding polynomial fits, on 
the left and right panels, respectively. 

 

From Figure 97 it can be seen that the great majority of the non-roundabout junctions have 
three approaches (i.e. legs). The box plots on the panel on the right show an increase on the 
number of accidents on four legged junctions when compared with three legged ones. 
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Figure 97 Bar plot giving the number of junctions with 3 and 4 legs (on the left panel) and 
box plot of the number of accidents per number of legs (right panel) for the 
aggregated data excluding the roundabouts. 

 

The box plots of the number of accidents per country as shown in Figure 98 suggest that 
highest accident median value is taken by the Portuguese junctions followed by Austrian and 
Norway. 
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Figure 98 Box plot of the number of accidents in the aggregated set excluding the 
roundabouts by Country. 

 

The values in Table 38 were obtained for the three variables and also for the number of 
accidents per country. 

 

Table 38 Summary statistics for the variables registered on the aggregated junctions excluding 
roundabouts. 

Variables minimum mean standard 
deviation 

median maximum 

AADTmaj 133 4349.817 4085.678 3024 32311 

AADTmin 7 946.159 1441.086 540 11993 

Accidents 0 0.892 1.623 0 17 

Accidents (Austria) 0 1.218 1.598 1 13 

Accidents (Norway) 0 0.584 1.090 0 9 

Accidents (Portugal) 0 1.829 2.691 1 17 

7.2 The Poisson-Gamma hierarchical regression model 

The Poisson-Gamma model as given by Equations 2.3 and 2.4 with with    and 

),(~ aaGamma  with a=0.01. 

ln( î ) = β0 + β1ln(AADTmaji) + β2ln(AADTmini) + β3Number_of_Legsi + β4Countryi            (7.1) 

Equation 7.1 was applied and the   parameters were given a priori Normal distributions with 

mean 0 and precision 0.0001 (the variance is equal to the inverse of the precision). The 
baseline model was taken to be a three legged Norwegian junctions as these had the higher 
sample size (as compared to the samples formed by Austria and Portugal). 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 128 of 159 

The MCMC algorithm comprised 3 chains and was run for 35000 iterations with 20000 burn-
in iterations with a thinning rate of 45. The results thus described were based on a sample 
with dimension equal to 1002. 

The Gelman-Rubin statistics for the beta parameters plotted in Figure 99 show that there 
seems that there are reasons to believe that the densities of the first two coefficient 
estimates have not converged. Several simulations were made with higher number of 
iterations and several different initial values were also considered. The resulting simulations 
obtained similar Gelman-Rubin graphs as the ones represented in Figure 99, therefore 
indicating that there were some difficulties in attaining convergence for the two initial 
coefficient parameters. 
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Figure 99 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters, from the Poisson-Gamma regression model fitted to the 
aggregated junction data excluding the roundabouts. 

 

Point estimates, corresponding standard deviations, Monte Carlo errors and 95% credible 
intervals obtained after the Poisson-Gamma regression model was fitted to the data are 
given in Table 39 for the regression parameters. The corresponding posterior densities for 
the parameters are given in the plots depicted in Figure 100. 

 

Table 39 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson-Gamma regression model was 
fit to the aggregated accident data (excluding roundabouts) using 3-leg Norwegian 
junctions as baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -8.790 0.421 5.646E-02 -9.689 -8.088 

β1 (ln(AADTmaj)) 0.594 0.060 7.566E-03 0.487 0.729 

β2 (ln(AADTmin)) 0.256 0.045 4.936E-03 0.156 0.339 

β3 (Number_of_Legs=‟4‟) 0.449 0.112 1.073E-02 0.223 0.668 

β4 (Country=´Austria‟) 0.580 0.129 1.374E-02 0.335 0.854 

β4 (Country=‟Portugal‟) 0.751 0.134 1.458E-02 0.485 1.003 

 

From the examination of the point mean estimates it can be stated that, according to this 
particular Poisson-Gamma model, every unitary increase in ln(AADTmaj) (see example in 
section 3.2) increases the expected frequency of accidents by approximately 81% (assuming 
all other variables remain constant). A unit increase in ln(AADTmin) increases the expected 
frequency of accidents in around 29%. 
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Junctions with four legs have an expected number of accidents around 57% higher than 
junctions with three legs (see values in Table 39). Respectively, Austrian and Portuguese 
junctions have an expected 79% and 112% more accidents than similar Norwegian junctions. 
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Figure 100 Posterior densities of the beta parameter estimates obtained after a Poisson-
Gamma regression model was fitted to the aggregated data set excluding 
roundabouts. 

 

The expected frequency of accidents for a one year period is given by the equations shown 
in Table 40. 

 

Table 40 Expected number of accidents per year for the aggregated junction data set (omitting 
roundabouts) obtained by a Poisson-Gamma regression model using 3-leg Norwegian 
junctions as baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Country 

„Austria‟ 

„Norway‟ 

„Portugal‟ 

 

256.0594.04 min10720.2ˆ iii AADTAADTmaj  
 

256.0594.04 min10523.1ˆ iii AADTAADTmaj  
 

256.0594.04 min10227.3ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Country 

„Austria‟ 

„Norway‟ 

„Portugal‟ 

 

256.0594.04 min10261.4ˆ iii AADTAADTmaj  
 

256.0594.04 min10385.2ˆ iii AADTAADTmaj  
 

256.0594.04 min10055.5ˆ iii AADTAADTmaj  
 

 

Overall, junctions with three legs have lower expected number of accidents than the 
junctions with four legs. The country with the least expected number of accidents is Norway 
whereas Portugal has the highest accident frequency. 

7.2.1 Model Checking 

The graphs of replicated data in form of histograms and dot plots are depicted in Figure 101 
and Figure 102, respectively. 

Both the histograms and the box plots show that the posterior predictive distribution data 
replicated by the Poisson-Gamma model adequately models the observed data. 
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Figure 101 Histogram of the observed number of accidents in the aggregated set, excluding 
roundabouts (left upper corner) and 19 histograms of replicated data sets (“Acc.rep”) 
of the numbers of accidents obtained by the posterior predictive distribution 
according to the Poisson-Gamma regression model. 

 

 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 131 of 159 

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

0 400 800

0
5

1
0

2
0

 

Figure 102 Dot plot of the observed number of accidents in the aggregated set, excluding 
roundabouts (left upper corner) and 19 dot plots of replicated data sets (“Acc.rep”) of 
the numbers of accidents obtained by the posterior predictive distribution according 
to the Poisson-Gamma regression model. 

 

The posterior probability of the discrepancy measures obtained from the replicated data is 
greater than the corresponding discrepancy measures resulting from the observed data 
which indicates a good fit as can be seen in the plots in Figure 103. 
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Figure 103 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson-Gamma regression model fitted to the aggregated 
data excluding roundabouts. The discrepancy measures T are: maximum, sum, mean 
and standard deviation (sd). The p is the estimated probability that the measures 
obtained by the posterior predictive distributions are greater than the ones obtained 
by the observed data. 

 

Figure 104 shows the graph of the discrepancy measure obtained by the variance to mean 
ratio, giving an estimated posterior probability equal to 0.522 which indicates that the 
Poisson-Gamma model seems to be taking the overdispersion into account. 
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Figure 104 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson-Gamma regression model fitted to 
the aggregated data omitting the roundabouts, for the same measure. The p gives the 
estimated probability that the measure obtained by the posterior predictive 
distributions is greater than the one obtained by the observed data. 
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This model produces an average deviance, D , of 2047.810 and an effective model 
dimension, de, of 258.418, giving a DIC of 2306.230. These values are used for model 
comparison which is described in section 7.4. 

The dispersion parameter (1/  in Equation 2.4) was estimated as 0.692. 

The expected accident frequency for the four junction types and three traffic controls of 
junctions excluding roundabouts, for the minimum, mean, median and maximum profiles 
were calculated for the corresponding values of ln(AADTmaj) and ln(AADTmin). The 
posterior means and corresponding standard deviations are provided in Table 41. 

 

Table 41 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson-Gamma regression 
model for the aggregated accident data (omitting roundabouts). 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 4.890 7.971 8.014 10.383 

 ln(AADTmin) 1.946 6.095 6.292 9.392 

Country Number_of_Legs mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

Austria 3 0.008 

(0.002) 

0.149 

(0.018) 

0.161 

(0.019) 

1.456 

(0.218) 

 
4 

0.013 

(0.003) 

0.233 

(0.027) 

0.252 

(0.029) 

2.283 

(0.356) 

Norway 3 0.005 

(9.147E-04) 

0.083 

(0.006) 

0.090 

(0.006) 

0.816 

(0.128) 

 
4 

0.007 

(0.002) 

0.130 

(0.014) 

0.141 

(0.016) 

1.285 

(0.242) 

Portugal 3 0.010 

(0.003) 

0.177 

(0.020) 

0.190 

(0.021) 

1.725 

(0.248) 

 
4 

0.016 

(0.004) 

0.277 

(0.038) 

0.299 

(0.040) 

2.715 

(0.475) 

 

For a typical Norwegian junction (under the column Mean) with three legs one expects 0.083 
accidents, while for Austrian and Portuguese junctions with the same number of legs 0.149 
and 0.177 accidents, respectively are expected. 

7.3 The Poisson Log-Normal hierarchical regression model 

The Poisson Log-Normal model was fitted to the data according to Equations 2.5 and 2.6 in 
Chapter 2, where the parameter   in Equation 2.6 had a Gamma(a,b) a priori distribution 

with a=1 and b=0.01. The MCMC algorithm was run with three chains for 35000 iterations 
with 20000 as burn-in with a thinning rate of 45 iterations, resulting in samples with 
dimension 1002. 

The graphs depicted in Figure 105 show the three Gelman-Rubin statistics obtained for the 
estimates of the   parameters. It can be observed that the Rhat statistic converges to 1 in 

all the parameters as the number of iterations increase. Therefore, there are no reasons to 
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suspect non-convergence of the iterative simulation. 

 

beta0 chains 1:3

s tart-iteration

496 550

    0.0

    0.5

    1.0

    1.5

beta1 chains 1:3

s tart-iteration

496 550

    0.0

    0.5

    1.0

beta2 chains 1:3

s tart-iteration

496 550

    0.0

    0.5

    1.0

    1.5

beta.legs chains  1:3

s tart-iteration

496 550

    0.0

    0.5

    1.0

beta.country[2] chains  1:3

s tart-iteration

496 550

    0.0

    0.5

    1.0

    1.5

beta.country[3] chains  1:3

s tart-iteration

496 550

    0.0

    0.5

    1.0

 

Figure 105 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters, from the Poisson Log-Normal regression model fitted to 
the aggregated junction data excluding the roundabouts. 

 

The posterior means of the parameter estimates, corresponding standard deviations, Monte 
Carlo standard errors and 95% credible intervals are displayed in Table 42. The 
corresponding estimated posterior densities are displayed in the graphs in Figure 106. 

 

Table 42 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson Log-Normal regression model 
was fit to the aggregated accident data (omitting roundabouts) using 3-leg Norwegian 
junctions as baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -9.268 0.484 4.421E-02 -10.230 -8.377 

β1 (ln(AADTmaj)) 0.605 0.063 5.482E-03 0.486 0.734 

β2 (ln(AADTmin)) 0.272 0.053 3.533E-03 0.167 0.371 

β3 (Number_of_Legs=‟4‟) 0.392 0.112 3.594E-03 0.176 0.613 

β4 (Country=´Austria‟) 0.600 0.116 3.651E-03 0.368. 0.816 

β4 (Country=‟Portugal‟) 0.677 0.118 4.919E-03 0.447 0.902 

 

From the examination of the mean posterior estimates in Table 42 it can be stated that every 
unitary increase in ln(AADTmaj) increases the predicted number of accidents by 
approximately 83%, provided the other variables remain constant. An increase in one unit of 
ln(AADTmin) increases the accident frequency in around 31%. A typical four leg junction is a 
posteriori expected to have 48% more accidents than a three leg junction (with the other 
explanatory variables constant). 

Austrian and Portuguese junctions are a posteriori expected to have 82% and 97% more 
injury accidents than a Norwegian junction with the same values of ln(AADTmaj), 
ln(AADTmin) and number of legs. 
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Figure 106 Posterior densities of the beta parameter estimates obtained after a Poisson Log-
Normal regression model was fitted to the aggregated data set, excluding 
roundabouts. 

 

The equations giving the expected frequency of injury accidents, per year, per number of 
legs and country are given in Table 43. 

 

Table 43 Expected number of accidents per year for the aggregated junction data set (omitting 
roundabouts) obtained by a Poisson Log-Normal regression model using 3-leg 
Norwegian junctions as baseline. 

 Expected Numbers of Accidents 

Number_of_Legs=‟3‟  

Country 

„Austria‟ 

„Norway‟ 

„Portugal‟ 

 

272.0605.04 min10719.1ˆ iii AADTAADTmaj  
 

272.0605.05 min10436.9ˆ iii AADTAADTmaj  
 

272.0605.04 min10857.1ˆ iii AADTAADTmaj  
 

Number_of_Legs=‟4‟  

Country 

„Austria‟ 

„Norway‟ 

„Portugal‟ 

 

272.0605.04 min10543.2ˆ iii AADTAADTmaj  
 

272.0605.04 min10396.1ˆ iii AADTAADTmaj  
 

272.0605.04 min10747.2ˆ iii AADTAADTmaj  
 

7.3.1 Model Checking 

Figure 107 and Figure 108 contain a collection of histograms and dot plots of data replicated 
by the model as well as the histogram and dot plot (on the upper left corner) of the observed 
data, i.e. the number of injury accidents (Accidents). Overall, from the examination of these 
figures it can be stated that the model under consideration is able to replicate the observed 
data adequately. 
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Figure 107 Histogram of the observed number of accidents in the aggregated set, excluding 
roundabouts (left upper corner) and 19 histograms of replicated data sets (“Acc.rep”) 
of the numbers of accidents obtained by the posterior predictive distribution 
according to the Poisson Log-Normal regression model. 
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Figure 108 Dot plot of the observed number of accidents in the aggregated set, excluding 
roundabouts (left upper corner) and 19 dot plots of replicated data sets (“Acc.rep”) of 
the numbers of accidents obtained by the posterior predictive distribution according 
to the Poisson Log-Normal regression model. 

 

The results of the four discrepancy measures are displayed in Figure 109. The probabilities 
that the discrepancy measures obtained by the replicated data are greater than the 
corresponding discrepancy measures from the observed data lie within the satisfactory 
boundaries of 0.1 to 0.9 (according to Congdon, 2005) and indeed are all near the ideal 
value of 0.5, indicating that the model seemed to be able to replicate these particular 
discrepancies. 
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Figure 109 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson Log-Normal regression model fit to the aggregated 
data excluding roundabouts. The discrepancy measures T are: maximum, sum, mean 
and standard deviation (sd). The p is the estimated probability that the measures 
obtained by the posterior predictive distributions are greater than the ones obtained 
by the observed data. 

 

The same conclusion can be drawn when examining the ratio of variance to mean in Figure 
110. 
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Figure 110|   Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson Log-Normal regression model fitted 
to the aggregated data omitting the roundabouts, for the same measure. The p gives 
the estimated probability that the measure obtained by the posterior predictive 
distributions is greater than the one obtained by the observed data. 

 

This indicates that the Poisson Log-Normal model is also able to detect and replicate the 
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data‟s overdispersion. 

This model produces an average deviance, D , of 2076.530 and an effective model 
dimension, de, of 281.447, giving a DIC of 2357.980. The dispersion parameter (1/ ) was 

estimated as 0.610. These values will be used in the model comparison described in section 
7.4. 

The expected accident frequencies for the three countries per number of legs for four profiles 
are displayed in Table 44. 

 

Table 44 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson Log-Normal regression 
model for the aggregated accident data (omitting roundabouts). 

  Minimum Mean Median Maximum 

 ln(AADTmaj) 4.890 7.971 8.014 10.383 

 ln(AADTmin) 1.946 6.095 6.292 9.392 

Country Number_of_Legs mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

Austria 3 0.006 

(0.001) 

0.113 

(0.013) 

0.123 

(0.014) 

1.208 

(0.223) 

 4 0.009 

(0.002) 

0.168 

(0.020) 

0.182 

(0.021) 

1.782 

(0.302) 

Norway 3 0.003 

(7.943E-04) 

0.062 

(0.005) 

0.067 

(0.005) 

0.662 

(0.113) 

 4 0.005 

(0.001) 

0.092 

(0.011) 

0.099 

(0.012) 

0.979 

(0.171) 

Portugal 3 0.006 

(0.002) 

0.122 

(0.014) 

0.133 

(0.014) 

1.298 

(0.202) 

 4 0.009 

(0.003) 

0.182 

(0.027) 

0.197 

(0.028) 

1.923 

(0.314) 

 

A typical Norwegian junction with three legs is expected to have 0.062 accidents while a 
junction with four legs is expected to have 0.092 accidents. In the worst case scenario, for 
maximum values of ln(AADTmaj) and ln(AADTmin) a Portuguese four leg junction is 
expected to have1.923 accidents per year. Typical Austrian junctions with three legs are 
expected to have 0.113 accidents per year. 

7.4 Discussion 

Table 45 shows the resulting fit, complexity and overall model choice (DIC) score for the 
models fitted to the aggregated junction data (but excluding roundabouts). 
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Table 45 Comparison of DIC and related statistics for the three models fitted to the aggregated 
junction data (excluding roundabouts). 

Regression Model D  de DIC 

Poisson-Gamma 

Poisson Log-Normal 

2048 

2077 

258 

281 

2306 

2358 

 

The Poisson-Gamma emerges as the model with the lower DIC value. Since this model 
adequately captures the data discrepancies, including overdispersion, it can be concluded 
that it models the aggregated junction data (without the roundabouts) well. 

Figure 111 shows the posterior means of the expected number of accidents for mean profile 
values of ln(AADTmaj) and ln(AADTmin) obtained by the Poisson-Gamma model (as 
depicted in Table 44). 
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Figure 111 Values of the posterior means of the expected number of accidents for the 
aggregated data set excluding the roundabouts, classified per country and number of 
legs (as under column Mean in Table 44). 

 

Junctions with four legs have higher values for the expected number of injury accidents 
regardless of the country, than do junctions with three legs. 

8 Modelling Austrian, Dutch and Portuguese injury 
accidents on roundabout Junctions 

The present chapter describes the combined analysis of the set of data formed after joining 
the Austrian, Dutch and Portuguese roundabout junction data sets. 

8.1 Austrian, Dutch and Portuguese Roundabout Data 

The data described in this section consists of several measurements registered on 142 
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roundabouts from the Austrian, Dutch and Portuguese rural road network, being 39 
roundabouts from Austria, 27 from the Netherlands and 76 from Portugal. 

Per junction, the variables considered (note that there were no measurements for the 
numbers of legs in the Austrian data) included: 

 Accidents: gives the number of injury accidents; 

 AADTmaj: represents the traffic volume entering the major road legs (annual 
average daily traffic); 

 AADTmin: represents the traffic volume entering the minor road legs (annual 
average daily traffic). 

 Country: a categorical variable indicating the country where the junction was 
registered (“1” if Austria, “2” if Holland and “3” if Portugal). 

 

The dot plot showed on the left panel of Figure 112 shows the numbers of accidents per 
junction for the three countries. The histogram displayed on the right panel of the same figure 
gives the accident frequencies per intervals. 
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Figure 112 Plot of Accidents, per junctions, registered in the Austrian, Dutch and Portuguese 
roundabout rural road network junction data (on the left) and the histogram of the 
frequency of Accidents (on the right). 

 

The data sets corresponding to the three countries were joined even though each set 
represent counts measured over different time periods. The analysis performed, including the 
modelling, took the three time periods into account so that the final results concerned a 
period of one year. 

The two graphs depicted in Figure 113 represent the plots of AADTmaj (left panel) and 
AADTmin (right panel) plotted against the number of injury accidents, In both graphs was 
included a fitted smooth regression curve (represented by the solid curves). The great 
majority of accidents occur for values of AADTmaj between 1000 and 10000 and between 
500 and 5000 for AADTmin. 
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Figure 113 The number of accidents at roundabouts for Austrian, Dutch and Portuguese data 
setsagainst AADTmaj and AADTmin, and corresponding polynomial fits, on the left 
and right panels, respectively. 

 

Figure 114 shows the box plots of the number of accidents per country. 
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Figure 114 Box plot of the number of accidents in the aggregated set including only 
roundabouts (Austria, Holland and Portugal) by Country. 

 

It can be observed that, due to the small sample size of Dutch roundabouts the 
corresponding box plot was reduced to its median (horizontal line) and three points. It can 
also be seen that the Austrian median number of injury accidents in roundabouts is higher 
than the corresponding value in Portuguese roundabouts. 

The summary statistics for some of the variables in the data set are displayed in Table 46 
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Table 46 Summary statistics for the variables registered on the aggregated roundabout 
junctions from Austria Holland and Portugal. 

Variables minimum mean standard 
deviation 

median maximum 

AADTmaj 1000 8428.310 5180.784 7534.500 26565 

AADTmin 500 3597.662 3404.899 2722.438 19359 

Accidents 0 1.838 2.525 1 12 

8.2 The Poisson-Gamma hierarchical regression model 

The Poisson-Gamma hierarchical regression model was fitted to the aggregated roundabout 
data set according to Equations 2.3 and 2.4 in Chapter 2. The parameters   and   where 

such that    and ),1(~ aGamma  with a=0.01. The expression given by Equation 8.1 was 

applied in Equation 2.3. 

ln( î ) = β0 + β1ln(AADTmaji) + β2ln(AADTmini) + β3Countryi             (8.1) 

The   parameters were given a priori Normal distributions with mean equal to 0 and 

variance 10000. The MCMC algorithm comprised three chains and was run for 35000 
iterations of which 33000 were burn-in with a thinning rate of 6, resulting in samples of size 
1002. 

The baseline, or reference, category was: 

Country = Portugal. 
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Figure 115 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters, from the Poisson-Gamma regression model fitted to the 
aggregated junction roundabout data. 

 

The Gelman-Rubin statistics are plotted in the graphs depicted in Figure 115. There seems 
to be no reason to doubt non-convergence in any of the parameters concerned. 

The point estimates for the Poisson-Gamma fit are given in Table 47. The densities of the 
parameter estimates are displayed in Figure 116. They show several spikes leading to 
believe that convergence was not properly attained for those regressor parameter 
estimators, especially for 0 . 

Since the prior beliefs about the beta parameters were ´vague‟, diffuse and in the limit 
uninformative, the posterior densities will be dominated by the likelihood (i.e. the data 
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contains much more information than the prior about the parameters). According to Jackman 
(2009), in the limiting case of an uninformative prior, the only information about the 
parameters is that in the data, and the posterior has the same shape as the likelihood 
function. In this particular case the information about the parameters was taken mostly from 
the initial values considered. 

 

Table 47 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson-Gamma regression model was 
fit to the aggregated roundabout accident data Portuguese junctions as baseline. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -4.776 1.120 1.543E-01 -6.207 -3.143 

β1 (ln(AADTmaj)) 0.403 0.091 1.230E-02 0.226 0.539 

β2 (ln(AADTmin)) 0.044 0.093 1.253E-02 -0.100 0.202 

β3 (Country=´Austria‟) 0.287 0.239 3.247E-02 -0.125 0.701 

β4 (Country=´Holland‟) -2.970 0.375 5.167E-02 -3.675 -2.407 
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Figure 116 Posterior densities of the beta parameter estimates obtained after a Poisson-
Gamma regression model was fitted to the roundabout aggregated data set. 

 

From observation of the values of the mean estimates in Table 47 it can be stated that one 
unitary increase in ln(AADTmaj) (see example in section 3.2 for the meaning of unitary 
increase) increases the expected number of injury accidents by 50% (when the remaining 
variables have constant values). The same increase in ln(AADTmin) increases the expected 
number of accidents in only 4%. Austria and Dutch roundabouts are a posteriori expected to 
have approximately 33% more and 95% less accidents, respectively, than a Portuguese 
roundabout when the other variables remain constant. 
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Table 48 Expected number of accidents per year obtained by a Poisson-Gamma regression 
model, for the aggregated roundabout junction data set Portuguese junctions as 
baseline. 

Country Expected Numbers of Accidents 

„Austria‟ 

„Holland‟ 

„Portugal‟ 

044.0403.02 min10123.1ˆ iii AADTAADTmaj    
044.0403.04 min10323.4ˆ iii AADTAADTmaj    
044.0403.03 min10426.8ˆ iii AADTAADTmaj  

 

 

The equations giving the expected accident frequencies for a one year period in junctions 
from the aggregated data set are displayed in Table 48, for the three countries. The country 
with the lowest expected number of injury accidents in roundabouts is the Netherlands and 
the country with the highest is Austria. 

8.2.1 Model Checking 

The replicated numbers of injury accidents displayed as histograms and dot plots are shown 
in Figure 117 and Figure 118, respectively. Overall, it can be stated that this particular 
Poisson-Gamma model seems able to replicate the observed data reasonably well. 
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Figure 117 Histogram of the observed number of accidents in the aggregated roundabout data 
set (left upper corner) and 19 histograms of replicated data sets (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson-Gamma regression model. 

 

The plots of the discrepancy measures are displayed in Figure 119. All the four measures 
seem to be captured by the Poisson-Gamma model in a satisfactory way (p is close to 0.5). 
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Figure 118 Dot plot of the observed number of accidents in the aggregated set, including 
roundabouts only (left upper corner) and 19 dot plots of replicated data sets 
(“Acc.rep”) of the numbers of accidents obtained by the posterior predictive 
distribution according to the Poisson-Gamma regression model. 
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Figure 119 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson-Gamma regression model fit to the aggregated 
roundabout data. The discrepancy measures T are: maximum, sum, mean and 
standard deviation (sd). The p is the estimated probability that the measures obtained 
by the posterior predictive distributions are greater than the ones obtained by the 
observed data. 
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The same conclusion can be drawn from the observation of the discrepancy measure 
employed to check whether the model is taking the overdispersion into account. This 
measure is displayed in Figure 120. It can be concluded that the Poisson-Gamma model is 
taking the observed data overdispersion into account. 
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Figure 120 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson-Gamma regression model fit to the 
aggregated roundabout data, for the same measure. The p gives the estimated 
probability that the measure obtained by the posterior predictive distributions is 
greater than the one obtained by the observed data. 

 

This model produces an average deviance, D , of 370.101 and an effective model 
dimension, de, of 55.441, giving a DIC of 425.542. The dispersion parameter (1/  in 

Equation 2.4) was estimated as 0.758. Some of these values will be used for model 
comparison which is discussed in section 8.4. 

The expected numbers of accidents for a one year period for the aggregated roundabout 
junctions for the minimum, mean, median and maximum profiles were calculated and 
presented in Table 49. 

 

Table 49 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson-Gamma regression 
model for the aggregated roundabout accident data. 

 Minimum Mean Median Maximum 

ln(AADTmaj) 6.908 8.828 8.927 10.190 

ln(AADTmin) 6.215 7.731 7.909 9.871 

 mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

Austria 
0.247 
(0.068) 

0.561 
(0.099) 

0.589 
(0.109) 

1.113 
(0.398) 

Holland 
0.009 
(0.002) 

0.022 
(0.006) 

0.023 
(0.007) 

0.045 
(0.022) 

Portugal 
0.187 
(0.054) 

0.418 
(0.059) 

0.438 
(0.058) 

0.803 
(0.160) 
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Given the traffic volumes, a typical Austrian roundabout junction is expected to have 0.561 
accidents in one year whereas a typical Dutch roundabout is expected to have only 0.022 
and a Portuguese 0.418 in the same period of time. 

8.3 The Poisson Log-Normal hierarchical regression model 

The Poisson Log-Normal model was fitted to the data according to Equations 2.5 and 2.6 in 
Chapter 2, where the parameter   in Equation 2.6 had a Gamma(a,b) a priori distribution 

with a=1 and b=0.01. The MCMC algorithm was run with three chains for 35000 iterations 
with 33000 as burn-in with a thinning rate of 6 iterations, resulting in samples with dimension 
1002. 

The graphs depicted in Figure 121 show the three Gelman-Rubin statistics obtained for the 
estimates of the   parameters. It can be observed that the Rhat statistic converges to 1 in 

all the parameters as the number of iterations increase. Therefore, there are no reasons to 
suspect non-convergence of the iterative simulation. 
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Figure 121 Plots of the Gelman-Rubin statistics corresponding to three Markov chains, for the 
beta coefficient parameters, from the Poisson Log-Normal regression model fitted to 
the aggregated junction roundabout data. 

 

The posterior means of the parameter estimates, corresponding standard deviations, Monte 
Carlo standard errors and 95% credible intervals are displayed in Table 50 and the 
parameter estimates densities are shown in the graphs of Figure 122. 

 

Table 50 Point estimates, standard deviations, MC errors and 95% credible intervals for the 
coefficients of the parameters obtained after a Poisson Log-Normal regression model 
was fit to the aggregated roundabout accident data. 

Parameters mean s.d. MC errors 2.5% 97.5% 

β0  -10.380 1.188 1.564E-01 -12.480 -7.703 

β1 (ln(AADTmaj)) 0.923 0.148 1.968E-02 0.694 1.221 

β2 (ln(AADTmin)) 0.103 0.106 1.333E-02 -0.107 0.303 

β3 (Country=´Austria‟) 0.521 0.258 1.735E-02 0.013 1.026 

β4 (Country=´Holland‟) -2.817 0.487 1.447E-02 -3.776 -1.879 

 

The mean posterior estimates indicate that every unitary increase in ln(AADTmaj) and 



 

Accident Prediction Models for Rural Junctions on Four European Countries 
    

 

Page 149 of 159 

ln(AADTmin) increases the expected number of injury accidents by approximately 152% and 
11%, respectively, when all the other variables remain constant (see example in section 3.2). 
An Austrian roundabout is expected to have approximately 68% more accidents than a 
Portuguese roundabout and a Dutch roundabout is expected to have 94% less accidents 
than a Portuguese one. 
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Figure 122 Posterior densities of the beta parameter estimates obtained after a Poisson Log-
Normal regression model was fitted to the roundabout aggregated data set. 

 

The equations giving the expected number of injury accidents on roundabouts, per country 
and per year, are displayed in Table 51. The lowest expected number of injury accidents is to 
be found at Dutch roundabouts followed by Portuguese and Austrian roundabouts. 

 

Table 51 Expected number of accidents per year obtained by a Poisson Log-Normal regression 
model, for the aggregated roundabout junction data set. 

Country Expected Numbers of Accidents 

„Austria‟ 

„Holland‟ 

„Portugal‟ 

103.0923.05 min10207.5ˆ iii AADTAADTmaj  
 

103.0923.06 min10848.1ˆ iii AADTAADTmaj  
 

103.0923.05 min10092.3ˆ iii AADTAADTmaj  
 

8.3.1 Model Checking 

Figure 123 and Figure 124 show histograms and dot plots, respectively, of replicated data by 
the Poisson Log-Normal model together with the histogram and dot plot of the observed data 
(i.e. the number of injury accidents). From observation of those figures it can be stated that 
the model seems to replicate the data satisfactorily. 
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Figure 123 Histogram of the observed number of accidents in the aggregated roundabout data 
set (left upper corner) and 19 histograms of replicated data sets (“Acc.rep”) of the 
numbers of accidents obtained by the posterior predictive distribution according to 
the Poisson Log-Normal regression model. 

 

The four discrepancy measures whose results are displayed in Figure 125 show that the 
model also seems to capture the variations that these measures indicate. 
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Figure 124 Dot plot of the observed number of accidents in the aggregated set, including 
roundabouts only (left upper corner) and 19 dot plots of replicated data sets 
(“Acc.rep”) of the numbers of accidents obtained by the posterior predictive 
distribution according to the Poisson Log-Normal regression model. 
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Figure 125 Observed values of four discrepancy measures (vertical lines) compared with 
histograms of 1002 simulations from the posterior predictive distributions of the same 
measures obtained by the Poisson Log-Normal regression model fitted to the 
aggregated roundabout data. The discrepancy measures T are: maximum, sum, mean 
and standard deviation (sd). The p is the estimated probability that the measures 
obtained by the posterior predictive distributions are greater than the ones obtained 
by the observed data. 
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Figure 126 Observed values of a discrepancy measure (vertical line) corresponding to the 
variance over the mean, compared with a histogram of 1002 simulations from the 
posterior predictive distribution from the Poisson Log-Normal regression model fitted 
to the aggregated roundabout data, for the same measure. The p gives the estimated 
probability that the measure obtained by the posterior predictive distributions is 
greater than the one obtained by the observed data. 

 

The measure of discrepancy suggested by Congdon (2005) to check whether the model 
takes the data overdispersion into account is depicted in Figure 126. By observation of this 
figure it can be concluded that the Poisson Log-Normal model is recognising the 
overdispersion present in the observed data. 

This model produces an average deviance, D , of 367.824 and an effective model 
dimension, de, of 61.481, giving a DIC of 429.305. The dispersion parameter ( /1  in 
Equation 2.6) was estimated as 0. 761. 

The posterior means and corresponding standard deviations for the minimum, mean, median 
and maximum profiles of ln(AADTmaj) and ln(AADTmin) for the roundabouts from Austria, 
Holland and Portugal obtained by the Poisson Log-Normal model are displayed in  

Table 52. 

Given the traffic volumes tested, a typical Austrian roundabout is expected to have 0.409 
injury accidents in a one year period whereas a Dutch roundabout is expected to have 0.016 
accidents in the same period. 
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Table 52 Posterior means (standard deviations) of expected number of accidents for minimum, 
mean, median and maximum profiles obtained by the Poisson Log-Normal regression 
model for the aggregated roundabout accident data. 

 Minimum Mean Median Maximum 

ln(AADTmaj) 6.908 8.828 8.927 10.190 

ln(AADTmin) 6.215 7.731 7.909 9.871 

 mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.) 

Austria 
0.062 
(0.020) 

0.409 
(0.086) 

0.457 
(0.098) 

1.843 
(0.563) 

Holland 
0.002 
(0.001) 

0.016 
(0.008) 

0.018 
(0.009) 

0.070 
(0.035) 

Portugal 
0.036 
(0.012) 

0.241 
(0.039) 

0.269 
(0.043) 

1.072 
(0.249) 

8.4 Discussion 

The values of D , de and DIC shown in Table 53 for the two models considered in the present 
chapter suggest that, according with these values, there seems to be no great difference 
between the fit of the two models. 

 

Table 53 Comparison of DIC and related statistics for the three models fitted to the aggregated 
roundabout junction data. 

Regression Model D  de DIC 

Poisson-Gamma 

Poisson Log-Normal 

370.101 

367.824 

55.441 

61.481 

425.542 

429.305 

 

When taking into account the discrepancy measures obtained by the two models it can be 
seen that the Poisson-Gamma obtains slightly better results than the Poisson Log-Normal 
model. Consequently, the Poisson-Gamma model was chosen to represent the aggregated 
roundabout data set. 

9 Conclusions 

The aim of the study described in this report was to obtain accident prediction models for 
junctions situated on the rural road networks of four European countries with the employment 
of Bayesian statistical methods and techniques. 

As part of Workpackage 4 of the RISMET project a framework was created consisting of a 
set of several variables to be measured and collected on rural junctions belonging to the 
countries of several of the RISMET project partners. The objective was to obtain a data set 
formed by data from several European countries that shared the same registered variables. 
Consequently, an extensive statistical analysis was conducted with the corresponding results 
discussed for each country as well as allowing for cross country comparisons. 

The data analysed consisted of measurements taken at junctions belonging to the rural road 
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networks of Austria, Holland, Norway and Portugal. Although different time periods were 
reported for each country (i.e. different numbers of years of measurements for each country), 
the results were aggregated to represent a period of one year. Injury accident prediction 
models were obtained for each of the following countries: Austria, Norway and Portugal. The 
data sets of these three countries together with the Dutch data were also aggregated and 
analysed as one set taking an explanatory variable indicating the country. 

The Dutch data set consisted of a collection of approximately 500 junctions of which only 
some 50 had traffic volumes on all approaches. Because of this small sample these could 
not be used for obtaining individual accident prediction models. Consequently, it was decided 
to employ the data from Holland on the aggregated set formed by the other European 
countries. 

9.1 Model and Model Development 

Three regression models were fitted to each data set; they consisted on the Poisson, 
Poisson-Gamma and the Poisson Log-Normal models. Each model was assessed taking into 
account measurements of fit and adequacy. The model providing the best fit and therefore, 
the most appropriate to model the injury accidents in each set of data were then identified. 

In each of the three models the dependent variable was taken to be the number of injury 
accidents registered per junction over a period of time being the explanatory variables the 
major and minor annual average daily traffic volumes (AADT), the type of junction, number of 
legs, the traffic control and the speed limit. Due to some differences in measuring and 
gathering the data within each country, as well as availability of the data already collected, 
separate and different models were fitted to the country specific data. . 

All models were fitted with vague or non-informative prior and hyper-prior distributions. The 
posterior distributions and the parameter estimates were obtained using Monte Carlo 
methods and algorithms for sampling from arbitrary densities by implementing MCMC for 
effective Bayesian computation via the freely available, general purpose computer program 
for Bayesian statistica inference WinBUGS. Other analyses and several graphs and plots 
were produced with the R software (The R project for Statistical Computing). The MCMC 
simulations were obtained with three sequences of Markov chains. The starting values were 
chosen to be wide apart in the parameter space. The convergence was monitored and 
verified by observation of the graphs of the parameter‟s Gelman-Rubin statistics. 

The models were validated and checked using posterior predictive values and discrepancy 
measures that reflect the data attributes and features that should, afterwards, be reflected on 
the model‟s replicated data. The discrepancy measurements considered were the maximum, 
mean, median and standard deviation values as well as the ratio of the variance over the 
mean of the number of injury accidents to check whether the model took the data‟s 
overdispersion into account. 

After the data for the various countries were analysed (described in full detail in Chapters 3 
to 8) it was concluded that, of all three models considered, the Poisson regression model 
was found to be the least appropriate for modelling the accidents occurring at junctions of 
rural road networks in Austria, Norway, Portugal or even the aggregated data set. The main 
reason is that this regression model does not allow for overdispersion. The hierarchical 
Poisson-Gamma and Poisson Log-Normal models both provided better results and either of 
them can be considered appropriate for modelling the accident data of the analysed 
countries. However, this document proposes a final model from which inferences can be 
made, the choice which is based on the deviance information criterion (DIC) and posterior 
predictive checks. Based on that criterion, the Poisson-Gamma regression model is the most 
suited for modelling accidents at junctions. 
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9.2 Primary Conclusions per Country 

The expected injury accident frequencies were found to increase with increasing values of 
entering major and minor traffic volumes for all models considered, the increase in the former 
being more relevant for the increase in accident expectancy. The report also includes the 
values of the expected number of accidents for each type of junction considered, for the 
minimum, maximum, mean and median profiles of both major and minor annual average 
daily traffic volumes for each country and for the aggregated data set for all the countries. 

Overall, and for each analysis performed, it can be concluded that the occurrence of injury 
accidents on Norwegian junctions depends on the number of legs forming the junction (3 or 
4) and also on the speed limit of the approaching roads. Junctions with 4 legs have 
approximately 140% higher accident expectancy than 3 leg junctions, provided the other 
explanatory variables remain constant. It was also found that junctions with 70km/h approach 
speed limit have the highest accident expectancy followed by junctions with 60, 80 and 
90km/h speed limits (which have similar accident expectancy between them). One possible 
explanation is that 80 and especially 90km/h limit intersections are located on high standard 
roads and might have more effective traffic channelization and junction signing than lower 
speed limit junctions. 

The analysis of Austrian junctions found that the type of junction (roundabout, X or Y), as 
well as the traffic control employed (stop, signalised or yield) affects the injury accident 
expectancy. Roundabouts have the higher accident expectancy followed by junctions of type 
X. The categories of traffic control by decreasing order of accident expected frequency are: 
yield, stop and signalised. 

Portuguese junctions, like the Norwegian, have higher accident expectancy on 4 leg 
intersections than on 3 legged ones, approximately 29% more, provided the remaining 
variables keep constant values. The types of junction (intersection and roundabout) by 
decreasing order of accident expectancy are: intersection and roundabouts. Consequently, 
Portuguese roundabouts are expected to have lower numbers of accidents as the other 
types, which did not seem to happen for Austrian roundabouts where this type of junction 
was the one with higher accident expectancy. 

The analysis of the data set consisting on the aggregated non-roundabout junctions from 
Austria, Norway and Portugal showed that the expected accident frequency is higher 
(approximately 48% more) on 4 leg junctions than on 3 legged ones (provided the remaining 
variables were kept constant). The country indicator variable influences the injury accident 
frequencies. The countries expected accident frequencies by decreasing order are: Portugal, 
Austria and Norway, with Portugal and Austria non-roundabouts expected to have 
approximately 82% and 97%, respectively, higher accident expectancies than a Norwegian 
non-roundabout (all other variables remaining constant). 

The results obtained from the analysis of the aggregated set of Austrian, Dutch and 
Portuguese roundabout junctions showed that an unitary increase in the logarithm of major 
and minor annual average daily traffic volume increases the expected number of accidents 
by approximately 50% and 4%, respectively, and that Austrian and Dutch roundabouts are 
expected to have approximately 33% more and 95% less number of injury accidents, 
respectively, than a Portuguese roundabout, provided all other variables remain constant. As 
an example, suppose a junction from this particular aggregated set has a value of AADTmaj 
equal to 8500, consequently ln(AADTmaj) is equal to approximately 9.048. The same 
junction with 10.048 for ln(AADTmaj), i.e. a unitary increase (corresponding to an AADTmaj 
value of 23109.52) is expected to increase the number of injury accidents by approximately 
50%, provided all other variables suffer no change. 

9.3 General 

As a result of all the work that was performed within this particular task it is recommended to 
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use model fits using a Bayesian approach as these have the advantage of taking into 
account previous recorded information when modelling road accident traffic events, in 
particular in rural intersections. In addition, the use of Bayesian techniques has the 
advantage of providing not only estimates for the regression coefficients but also a density 
function for those coefficients. Nevertheless, the model assessment should also imply the 
use of the appropriate Bayesian techniques as exemplified in the analysis described in this 
deliverable. 

As future work, it would be very useful and interesting to study with more emphasis and 
detail the regression model forms that could be more appropriate to each country and also to 
the several aggregated country data sets. 

The wealth of data collected and gathered within the RISMET project tasks allows for further 
analysis and consequent conclusions to be drawn, amongst others, on the several types of 
accidents and victims injuries of the several European countries and consequent cross-
country comparisons. 
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