IRWIN
Improved local winter index to assess maintenance needs and adaptation costs in climate change scenarios

IRWIN Seminar 17th November 2009, Helsinki
IRWIN in brief

• ERA-NET Road project IRWIN with three partners from Finland and Sweden
• Foreca Consulting Ltd
• Klimator AB
• University of Gothenburg Regional Climate Group
• Analysing all archived road weather observations from Sweden and Finland
• Downscaling climate scenarios on road network to develop locally accurate winter index, ideal for road maintenance assessments

IRWIN Seminar 17th November 2009, Helsinki
Project Steering Group

- Eira Järviluoma /FinnRA (Project Manager)
- Christian Pecharda /Austrian Research Promotion Agency
- Jon Krokeborg /Vägvesen
IRWIN Work Plan

14 months from November 2008 to December 2009

IRWIN Seminar 17th November 2009, Helsinki
Global Climate Models

- Models simulate main physical interactions in the atmosphere/ocean system
Climate Scenarios

- Emission levels define the scenarios

IRWIN Seminar 17th November 2009, Helsinki
Global warming has NOT been cancelled...

- Global annual mean temperature since 1880 (source: NOAA)
- 100 = 1 degree above normal of 1951-1980 (+14°C)
- Since 1976 no values below normal
Recent months have been record warm

- 100 = 1 degree over 1951-1980 global mean
- Feb 1998, Mar 2002 and Jan 2007 three warmest months
Temperature rise in scenario A1B

- Northern latitudes will be most affected
Downscaling

• Downscaling means that poor resolution climate models are refined with better resolution local data
• Key issue is to find best meteorological observations
• We need as long time series as possible
• Good quality data, uninterrupted, stations on same locations
RWIS-data

RWIS station
Synoptic station

IRWIN Seminar 17th November 2009, Helsinki
Advantages of RWIS data

- Measurements close to the road
- Data used by maintenance for decisions
- Frequent measurements (30 minutes)
- High frequency of field stations
Three areas in Sweden

- Gothenburg
- Stockholm
- Sundsvall
Three areas in Finland

FinnRA stations

IRWIN stations and areas

IRWIN Seminar 17th November 2009, Helsinki
Details of Finnish data in IRWIN database

- All archived FinnRA’s RWIS data analysed from 1997 to 2008
- Number of stations have increased from 252 to 531
- 49 time series had 10 years of uninterrupted series, good enough for downscaling purposes
- Most important parameters are air temperature, road temperature, air moisture, precipitation, wind speed
- IRWIN Winter months = November – March, to be comparable with Swedish data

IRWIN Seminar 17th November 2009, Helsinki
Winter temperature trends in RWIS

• Some stations show clear warming trend during the 12 winters of 1997-2008
More temperature trends in RWIS

- ... some not so clear, e.g. those affected by continental or marine climate

IRWIN Seminar 17th November 2009, Helsinki
Maintenance data

<table>
<thead>
<tr>
<th>Area</th>
<th>Maintenance class</th>
<th>Ploughing of snow and slush</th>
<th>Liquid salting</th>
<th>Salting</th>
<th>Point sanding</th>
<th>Line sanding</th>
<th>Level with planer</th>
<th>Level with truck</th>
<th>Ploumarks and drift fences</th>
<th>Cleaning of traffic signs</th>
<th>Lowering snow banks</th>
<th>Snow removal</th>
<th>Prevent melting snow hazards</th>
<th>Removal of packed ice</th>
<th>Road condition check</th>
<th>Friction observation</th>
<th>1st class km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vantaa 04-09</td>
<td>I</td>
<td>252</td>
<td></td>
<td>246</td>
<td>60</td>
<td>9</td>
<td>1,5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>485</td>
</tr>
<tr>
<td>Tammisaari</td>
<td>I</td>
<td>151</td>
<td></td>
<td>113</td>
<td>14</td>
<td>2</td>
<td>-</td>
<td>292</td>
</tr>
<tr>
<td>Nummi 01-04</td>
<td>I</td>
<td>114</td>
<td>114,5</td>
<td>95</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>351</td>
</tr>
<tr>
<td>Espoo</td>
<td>I</td>
<td>196,3</td>
<td>195,5</td>
<td>170</td>
<td>18,5</td>
<td>0,5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>472</td>
</tr>
<tr>
<td>Hyvinkää</td>
<td>I</td>
<td>195,5</td>
<td>3,2</td>
<td>140,7</td>
<td>15</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,5</td>
<td>-</td>
<td>404</td>
</tr>
<tr>
<td>Itä-Uusimaa</td>
<td>I</td>
<td>218</td>
<td></td>
<td>168</td>
<td>5</td>
<td>13,5</td>
<td>-</td>
<td>1,5</td>
<td>13,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>16,2</td>
<td>-</td>
<td>410</td>
</tr>
<tr>
<td>Paimio 06-13</td>
<td>I</td>
<td>-</td>
<td>2,5</td>
<td>224,2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>263</td>
</tr>
<tr>
<td>Salo 05-10</td>
<td>I</td>
<td>-</td>
<td></td>
<td>-</td>
<td>178</td>
</tr>
</tbody>
</table>

- Maintenance actions collected from AURA database for the study areas
- Data available from 2003 onwards
Salting

01.10.2003 - 30.09.2004

<table>
<thead>
<tr>
<th>Maintenance area</th>
<th>1s and 1 class km</th>
<th>Material</th>
<th>10//07</th>
<th>11//07</th>
<th>12//07</th>
<th>01//08</th>
<th>02//08</th>
<th>03//08</th>
<th>04//08</th>
</tr>
</thead>
<tbody>
<tr>
<td>105 Vantaa 04-09</td>
<td>485</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>111 Tammisaari</td>
<td>292</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>113 Nummi 01-04</td>
<td>351</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>114 Espoo</td>
<td>472</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>116 Hyvinkää</td>
<td>404</td>
<td>Winter salt</td>
<td>185</td>
<td>196</td>
<td>482</td>
<td>480</td>
<td>569</td>
<td>338</td>
<td>27</td>
</tr>
<tr>
<td>118 Itä-Uusimaa</td>
<td>410</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>201 Paimio 06-13</td>
<td>263</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>202 Salo 05-10</td>
<td>178</td>
<td>Winter salt</td>
<td>163</td>
<td>672</td>
<td>1171</td>
<td>1443</td>
<td>1215</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>208 Raisio</td>
<td>300</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>212 Pori</td>
<td>333</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>321 Kotka</td>
<td>225</td>
<td>Winter salt</td>
<td>182,2</td>
<td>171</td>
<td>461,6</td>
<td>383,8</td>
<td>471,5</td>
<td>409,3</td>
<td>15,3</td>
</tr>
<tr>
<td>333 Kouvolan 05-12</td>
<td>240</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>343 Lappeenranta 04-09</td>
<td>216</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>348 Imatra</td>
<td>158</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>362 Mikkeli</td>
<td>309</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>370 Pieksämäki 04-11</td>
<td>186</td>
<td>Winter salt</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- AURA database used also to analyse usage of salt

IRWIN Seminar 17th November 2009, Helsinki
Winter Index

\[WI = \sum (A_{\text{ice}} + B_{\text{frost}} + C_{\text{Prec}} + D_{\text{drift}}) \]

- \(A_{\text{ice}} \) – situation with risk of road icing
- \(B_{\text{frost}} \) – situation with risk of hoar frost
- \(C_{\text{prec}} \) – situation with precipitation
- \(D_{\text{drift}} \) – situations with drifting snow

- Index measures need for Salting and Plowing
- Takes into account strong winds, ground frost, extreme precipitation
Method

IRWIN Seminar 17th November 2009, Helsinki
Benefits of IRWIN project

• better linkage between weather and maintenance needs
• better understanding of variations to be expected
• better knowledge of impact from climate change on maintenance needs
• better coverage of extreme events
• Final report will summarise results, distributed to interested stakeholders
Advice to Road Owners

• Archive all your RWIS data with good metadata on stations, sensors and formats
• Do not change station numbering or sites
• For climate studies, long and un-interrupted time series required (minimum 10 years)
• Raw data must be interpolated for analysis to regular 30 min intervals
• Questionnaire sent to all ERA-NET countries to analyse how much data is available for similar studies
Contact information

Dr. Pirkko Saarikivi
Foreca Consulting Ltd
pirkko.saarikivi@foreca.com
Tammasaarenkatu 5, FIN-00180 Helsinki
Tel +358 9 6689 6466, Mobile +040 5000 262
Fax +358 9 6689 6411