

RIJKSWATERSTAAT INFORMATION

Rijkswaterstaat Ministry of Infrastructure and Water Management

Implementing CEDR Climate Adaptation tools in The Netherlands

Roadapt methodology, Stresstesting Highways by Rijkswaterstaat

Kees van Muiswinkel November 20th, 2018 CEDR End Event

<u>1</u>

The Netherlands, densely populated Delta, 60% below water level

Rijkswaterstaat manages

Highway network: 3.102 km

Waterway network: 8.000 km

Water system 90.000 km2

×

Ambition: resilient transport system

- Safe and seamless
- Accessible
- Beneficial for citizens, economy and society
- Resource efficient
- Environmentally friendly and adaptable

Transport infrastructure and mobility

more dependancy on telecom, electricity, chain effects

Challenges

- Aging infrastructure
- Budgets under pressure
- Consequences of climate change unknown for decision makers
- Uncertainty (eg. sea level rise & precipitation)
- Need for knowledge of risks, costs and benefits

Rijkswaterstaat & CEDR Climate Adaptation

Executive board (PEB) - implementation of Climate Adaptation:

- 2008 Road owners getting to grips with Climate Change: SWAMP - blue spot investigation 2011-2014
- 2012 Road owners adapting to Climate Change: ROADAPT- apply in InnovA58 project and 2018-2019 Highway Network Stresstest
- 2015 From desk to road: Plan to implement Detector products in Innovation Program in 2019!

Good for networking, exchanging knowledge, joint investments Better products , more value for money !!

Investigation of blue spots + risk assessment – SWAMP methodology (Deltares 2011- 2014)

Flooding from sea or rivers: high damage, low risk; by pluvial flooding: average damage, high risk

<u>888</u>

InnovA58 project (2016-2018)

Aim

- Increase robustness and resilience of InnovA58 and surroundings
- Derive lessons for broader application in Dutch Highway Network

Challenge

Use of CEDR tools for the most cost effective approach, resulting in climate and extreme weather resilient highway

<u>1888</u>

ROADAPT in InnovA58 towards adaptation strategy

	ROADAPT step - tools*	What did we do
1	Quick Scan**	 workshops: to determine climate threats for the A58 infrastructure and the surrounding environment to determine key risks and potential measures
2	Vulnerability Assessment	GIS methodology with several steps to determine vulnerabilities in the road network. The output consists of maps with these vulnerabilities.
3	Socio-economic Assessment	2 methods: - Cost Effectiveness Analysis - Cost Benefit Analysis
4	Adaptation Strategy	Dynamic adaptation pathways to determine an adaptation strategy

* Available on CEDR website

****** recently applied in A20 project again

Example: potential measures for bridges

Potential measure	Pro's	Cons
Increasing the capacity by enlarging the bridges	- Sustainable till 2100	 Very expensive Decapitalization of existing bridges
Increasing the capacity by intensifying maintenance	 Affordable Rijkswaterstaat can execute the maintenance 	 Less effective Sustainable till 2030/2040
Creating upstream water retention	 Very effective Sustainable beyond 2100 	 Expensive Outside of the sphere of influence of Rijkswaterstaat

- North

Other potential measures for the (Innov)A58

- Culverts increase capacity by enlarging or intensifying maintenance
- Increasing inclination of road
- Water retention adjacent to the road
- Elevate road

×.

ROADAPT Vulnerability Assessment

Potentially vulnerable locations for pluvial flooding

Legenda			1:125.000 AN
kwetsbaarheidsindex 0 - 10 10 - 20 20 - 30 30 - 40		e locaties voor Overstromen s gevolg van hevige regenval	0 1 2 3 4 km
40 - 50 50 - 60 60 - 70 70 - 80 80 - 90 90 - 100	Datum 22 December 2016	Projectnummer 1230905	Deltares Ereating Carla Life

AND A

Dynamic Adaptation pathways*

Hap generated with Pathways Generator, @2015, Deltares, Carthago Consultancy

Pathways for pluvial flooding: which measures now, which in the future

* Deltares reports available in English!!

To conclude: Climate Change Adaptation InnovA58

ROADAPT methodology applied, together with regional stakeholders

Long term adaptive approach, combined with restructuring A58 (extra lanes)

Combine measures for multiple benefits: water discharge; migration plants and animals; recreation

<u>1888</u>

Climate Resilient Networks project

- Stresstest of highways (2018-2019) and waterways (ROADAPT based methodology). Input for determining performance levels and actual measures
- 2. Determine performance levels & acceptable risks
- 3: Learning by doing in **Pilots**

<u>kää</u>t

ALL CHARLES

Scope - threats

Fluvial flooding	Threats Flooding of the road due to failure of flood defences	Results Map
	Flooded road due to incapacity of storm water run-off system	
	Flooded road due to influx from surrounding	Map
	Aquaplaning risk	
Pluvial	Erosion of embankments	
flooding	Run-off water flow to surroundings is too high	
	Water quality demands of run-off are not reached	Analysis
	Uplift of tunnels and lightweight materials	Analysis
	Bad visiblity during heavy rainfall	Analysis
	Thermal expansion of pavements	
Heat	Bridges get stuck	
	Less maintenance ability during periods of heat	Analysis
	Unequal settlements in dry periods	
Drought	Decreased skid resistance during rainfall after long dry period	Analysis
	Wild- en verge fires	Analysis
		Deltar

<u> 1995</u>

Qualitative risk assessments

before

- Collaborative approach
 - Awareness
 - No need for big data sets
- Risk based
 - Both likelihood and impact addressed
- Relatively fast and 'cheap'
- However
 - Awareness has been created
 - Understanding of most important threats has been gained

More information*

Kees van Muiswinkel Ministry of Infrastructure and Water Management Rijkswaterstaat Water, Traffic and Environment The Netherlands +31-6-1028 1526 (Cell NL) kees.van.muiswinkel@rws.nl www.rijkswaterstaat.nl/en

* Deltares Slides: Thomas Bles, thomas.bles@deltares.nl

Measures at present

- Guidelines for:
 - water discharge from bridges, tunnels
 - climate in (planning) projects
 - adaptation in cost benefit assessment
- Climate adaptation in replacement and renovation program
- Change procurement requirements for maintenance
- Analysis of relationship between extreme weather and congestion
- Climate adaptation in performance management

