Implementing CEDR Climate Adaptation tools in The Netherlands

Roadapt methodology, Stresstesting Highways by Rijkswaterstaat

Kees van Muiswinkel
November 20th, 2018
CEDR End Event
The Netherlands, densely populated Delta, 60% below water level
Rijkswaterstaat manages

- Highway network: 3.102 km
- Waterway network: 8.000 km
- Water system 90.000 km²
Ambition: resilient transport system

- Safe and seamless
- Accessible
- Beneficial for citizens, economy and society
- Resource efficient
- Environmentally friendly and adaptable
Transport infrastructure and mobility

more dependancy on telecom, electricity, chain effects

influenced by climate and extreme weather
Challenges

• Aging infrastructure
• Budgets under pressure
• Consequences of climate change unknown for decision makers
• Uncertainty (eg. sea level rise & precipitation)
• Need for knowledge of risks, costs and benefits
Rijkswaterstaat & CEDR Climate Adaptation

Executive board (PEB) - implementation of Climate Adaptation:

• 2008 Road owners getting to grips with Climate Change: SWAMP - blue spot investigation 2011-2014
• 2012 Road owners adapting to Climate Change: ROADAPT- apply in InnovA58 project and 2018-2019 Highway Network Stresstest
• 2015 From desk to road: Plan to implement Detector products in Innovation Program in 2019!

Good for networking, exchanging knowledge, joint investments
Better products, more value for money!!
Investigation of blue spots + risk assessment – SWAMP methodology (Deltares 2011-2014)

Flooding from sea or rivers: high damage, low risk; by pluvial flooding: average damage, high risk
InnovA58 project (2016-2018)

Aim
- Increase robustness and resilience of InnovA58 and surroundings
- Derive lessons for broader application in Dutch Highway Network

Challenge
Use of CEDR tools for the most cost effective approach, resulting in climate and extreme weather resilient highway
ROADAPT in InnovA58 towards adaptation strategy

<table>
<thead>
<tr>
<th>ROADAPT step – tools*</th>
<th>What did we do</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Quick Scan**</td>
<td>2 workshops: 1. to determine climate threats for the A58 infrastructure and the surrounding environment 2. to determine key risks and potential measures</td>
</tr>
<tr>
<td>2 Vulnerability Assessment</td>
<td>GIS methodology with several steps to determine vulnerabilities in the road network. The output consists of maps with these vulnerabilities.</td>
</tr>
<tr>
<td>3 Socio-economic Assessment</td>
<td>2 methods: - Cost Effectiveness Analysis - Cost Benefit Analysis</td>
</tr>
<tr>
<td>4 Adaptation Strategy</td>
<td>Dynamic adaptation pathways to determine an adaptation strategy</td>
</tr>
</tbody>
</table>

* Available on CEDR website
** recently applied in A20 project again
Example: potential measures for bridges

<table>
<thead>
<tr>
<th>Potential measure</th>
<th>Pro’s</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing the capacity by enlarging the bridges</td>
<td>- Sustainable till 2100</td>
<td>- Very expensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Decapitalization of existing bridges</td>
</tr>
<tr>
<td>Increasing the capacity by intensifying maintenance</td>
<td>- Affordable</td>
<td>- Less effective</td>
</tr>
<tr>
<td></td>
<td>- Rijkswaterstaat can execute the</td>
<td>- Sustainable till 2030/2040</td>
</tr>
<tr>
<td></td>
<td>maintenance</td>
<td></td>
</tr>
<tr>
<td>Creating upstream water retention</td>
<td>- Very effective</td>
<td>- Expensive</td>
</tr>
<tr>
<td></td>
<td>- Sustainable beyond 2100</td>
<td>- Outside of the sphere of influence of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rijkswaterstaat</td>
</tr>
</tbody>
</table>
Other potential measures for the (Innov)A58

- Culverts - increase capacity by enlarging or intensifying maintenance
- Increasing inclination of road
- Water retention adjacent to the road
- Elevate road
ROADAPT Vulnerability Assessment

Potentially vulnerable locations for pluvial flooding
Dynamic Adaptation pathways*

Pathways for pluvial flooding: which measures now, which in the future

* Deltares reports available in English!!
To conclude: Climate Change Adaptation InnovA58

ROADAPT methodology applied, together with regional stakeholders

Long term adaptive approach, combined with restructuring A58 (extra lanes)

Combine measures for multiple benefits: water discharge; migration plants and animals; recreation
Climate Resilient Networks project

1. **Stress test** of highways (2018-2019) and waterways (ROADAPT based methodology). Input for determining performance levels and actual measures

2. Determine **performance levels & acceptable risks**

3. Learning by doing in **Pilots**
Stresstest

- Project ‘climate robust networks’ currently underway

- Objectives for 2020
 - Insight in risks for the national road network due to extreme weather taking climate change into account
 - Evaluation and prioritization of risks
 - Adaptation strategy for a climate robust network in 2050

- Results
 - Maps
 - Analyses
 - Support and awareness
 - Insight in level of acceptable risk
Scope - Threats

<table>
<thead>
<tr>
<th>Threats</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluvial flooding</td>
<td></td>
</tr>
<tr>
<td>Flooding of the road due to failure of flood defences</td>
<td>Map</td>
</tr>
<tr>
<td>Flooded road due to incapacity of storm water run-off system</td>
<td>Map</td>
</tr>
<tr>
<td>Flooded road due to influx from surrounding</td>
<td>Map</td>
</tr>
<tr>
<td>Aquaplaning risk</td>
<td>Map</td>
</tr>
<tr>
<td>Erosion of embankments</td>
<td>Map</td>
</tr>
<tr>
<td>Run-off water flow to surroundings is too high</td>
<td>Analysis</td>
</tr>
<tr>
<td>Water quality demands of run-off are not reached</td>
<td>Analysis</td>
</tr>
<tr>
<td>Uplift of tunnels and lightweight materials</td>
<td>Analysis</td>
</tr>
<tr>
<td>Bad visibility during heavy rainfall</td>
<td>Analysis</td>
</tr>
<tr>
<td>Heat</td>
<td></td>
</tr>
<tr>
<td>Thermal expansion of pavements</td>
<td>Map</td>
</tr>
<tr>
<td>Bridges get stuck</td>
<td>Map</td>
</tr>
<tr>
<td>Loss maintenance ability during periods of heat</td>
<td>Analysis</td>
</tr>
<tr>
<td>Drought</td>
<td></td>
</tr>
<tr>
<td>Unequal settlements in dry periods</td>
<td>Map</td>
</tr>
<tr>
<td>Decreased skid resistance during rainfall after long dry period</td>
<td>Analysis</td>
</tr>
<tr>
<td>Wild- en verge fires</td>
<td>Analysis</td>
</tr>
</tbody>
</table>
Frameworks

 - Risk based
 - Step by step guidelines
Qualitative risk assessments

before

- Collaborative approach
 - Awareness
 - No need for big data sets
- Risk based
 - Both likelihood and impact addressed
- Relatively fast and ‘cheap’

- However
 - Awareness has been created
 - Understanding of most important threats has been gained
now also

Quantitative risk assessment

• Calculating
 • Susceptibility at different return periods
 • From a fixed threshold to dynamic thresholds
 • Impact at different return periods
 • Direct impact for road authority
 • Indirect impact for users / society

Damage functions

Deltamet
impact depends on location
Evaluation

Risk dialogue
- Comparison of risk levels of different threats
 - Combination of likelihood and impact
- Comparison of different impacts
 - For Rijkswaterstaat as National Road Authority
 - Calculation of annual expected damage (AED)
 - For users / society
Adaptation strategy

- Looking into an uncertain future
- Objective to have a climate robust network in 2050

This requires:
- Balance between costs and benefits
- Effective solutions
- Adaptive construction
- Flexibility to switch from one measure to another
More information*

Kees van Muiswinkel
Ministry of Infrastructure and Water Management
Rijkswaterstaat Water, Traffic and Environment
The Netherlands
+31-6-1028 1526 (Cell NL)
kees.van.muiswinkel@rws.nl
www.rijkswaterstaat.nl/en

* Deltares Slides: Thomas Bles, thomas.bles@deltares.nl
25
Measures at present

- Guidelines for:
 - water discharge from bridges, tunnels
 - climate in (planning) projects
 - adaptation in cost benefit assessment
- Climate adaptation in replacement and renovation program
- Change procurement requirements for maintenance
- Analysis of relationship between extreme weather and congestion
- Climate adaptation in performance management