
LINKING

BACKGROUND

INFORMATION
INTERLINK D4 Appendix 4, Michel Böhms (TNO)

With input from EU V-CON and bSI LDWG

OVERVIEW

Basic Linking

More Background Info on L1/L2/L3 semantic levels

Advanced Linking Issues

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING

For Link Sets we distinguish:

‘Linking Ontologies (LO)’ containing ontology/class-level links

Alignment Ontologies (AO) for Data Linking (‘Basic Linking’)

Conversion Rule Sets (CRS) for Data Conversion (‘Advanced Linking’ involving

more complex rules’)

‘Linking Data Sets (LDS)’ containing data set/individual-level links only (‘Basic

Linking’)

Only Basic Linking is discussed here further as expressed in RDF/RDFS/OWL(subset)

In case SHACL is used in future over OWL

owl:Class becomes rdfs:Class

owl:DatatypeProperty/ObjectProperty both become rdf:Property

owl:sameAs can become alternative like skos:exactMatch

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING:
FOUR RELEVANT DIMENSIONS

1. Three key Meta concepts:

Classes (owl:Class)

Properties (owl:DatatypeProperty or owl:ObjectProperty)

Individuals (owl:NamedIndividual)

2. 12 “Venn situations” representing intended semantics

5 for Classes, same 5 for Properties, 2 others involving individuals

3. Three Semantic Levels for classes

4. Asserted versus Inferred data

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: ASSUME …

2 ontologies: x and y

Where x, y are prefixes for their name space URIs

asserted or inferred

1 Class A in ontology x > x:A

1 Class B in ontology y > y:B

1 Property in ontology x > x:c

1 Property in ontology y > y:d

1 Individual in ontology x > x:a of type x:A

1 Individual in ontology y > y:b of type y:B

Classes represented by circles, Individuals represented by dots in

the next three figures

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: 5 VENN
SITUATIONS FOR CLASSES

INTERLINK D4 Appendix 4

The “default”, unconstrained situation.

Independent classes, no linking rules relevant

x:A rdfs:subClassOf y:B

y:B rdfs:subClassOf x:A

2. AND 3.

x:A owl:EquivalentClass y:B (symmetric)

x:A owl:DisjointWith y:B (symmetric)

1.

2.

3.

4.

5.

•
• • •

• •

•

•
•

•
•

•

•

•
•

•

•
•

•
•

•
•
•

•
•

9. September 2017

BASIC LINKING: 5 VENN
SITUATIONS FOR PROPERTIES

INTERLINK D4 Appendix 4

The “default”, unconstrained.

Independent properties, no mapping rule

(any area CAN also be empty)

x:c rdfs:subPropertyOf y:d

y:d rdfs:subPropertyOf x:c

x:c owl:propertyDisjointWith y:d (symmetric)

1.

2.

3.

4.

5.

2. AND 3.

x:A owl:EquivalentProperty y:B (symmetric)

•
• • •

• •

•

•
•

•
•

•

•

•
•

•

•
•

•
•

•
• •

•

•
•

9. September 2017

NOTES ON CLASSES

Declared Classes (rdf:type owl:Class), or

Restriction Classes (rdf:type owl:RestrictionClass)

Cardinalities (qualified or not)

hasValue

someValuesFrom / allValuesFrom

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: 2 VENN
SITUATIONS FOR INDIVIDUALS

INTERLINK D4 Appendix 4

1.

2.

x:a owl:sameAs y:b (symmetric)•
•

•
• •

•

•

•

x:a rdf:type y:B•
•

•
• •

•

•

•
a/b

a b

9. September 2017

BASIC LINKING: LINK TYPES
REPRESENTED IN RDF/RDFS/OWL

Class/Property level (in Alignment Ontology)

x:A rdfs:subClassOf y:B (== y:B rdfs:subClassOf x:A)

x:A owl:EquivalentClass y:B (syntactic sugar really)

x:c rdfs:subPropertyOf y:d (==y:d rdfs:subPropertyOf x:c)

x:A owl:EquivalentProperty y:B (syntactic sugar really)

x:A owl:disjointWith y:B

x:c owl:propertyDisjointWith y:d

Individual level (in Alignment Ontology (reference individuals!) or Linking

Data Set)

x:a owl:sameAs y:b

Individual <> class level

x:a rdf:type y:B (== y:B rdf:type x:A)

== means: same type of link

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: INFERENCE
POTENTIAL

Depending on the semantic level of the classes in ontologies more or less

can be inferred from assertions (available in ontologies, LOs, LDSs and/or

(individual) data sets)

Standard OWL2 inferences (‘entailments regimes’ or ‘meta-rules’) apply

Example meta-rule

IF (x:a rdf:type x:A) AND (x:A rdfs:subClassOf y:B)

THEN (x:a rdf:type y:B)

Where “x:A rdfs:subClassOf y:B” would be an actual “Link”

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: TWO MORE
META-RULE EXAMPLES

IF (x:a rdf:type x:A) AND

(x:A rdf:type owl:Class AND

rdfs:subClassOf [a owl:Restriction ;

owl:hasValue ? ;

owl:onProperty x:c

] .)

THEN (x:a x:c ?)

IF (x:a rdf:type x:A) AND (y:b rdf:type y:B) AND

(x:a owl:sameAs y:b) AND (x:a x:c x:z)

THEN (y:b x:c x:z)

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: 3 SEMANTIC
LEVELS FOR CLASSES

L1: Class without restrictions (the class is just ‘declared’)

L2: Class with only “necessary” Restrictions

L3: Class with “necessary & sufficient“ (n&s) Restrictions

An ontology can have a mix of 1/2/3-type classes

An ontology can be “semantically complete”, having only L3 classes

In practice an ontology is typically a mix of many L1s, some L2s and often no L3s,

i.e. “semantically not that strong”

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING: NINE RESULTING
(BI-DIRECTIONAL) LINKING
SITUATIONS

We distinguish the following 9 situations for classes in ontology x and y:

• Situation 1: L1/L1: worst case (but often encountered in practice)

• Situation 9: L3/L3: best case (but very unlikely)

• L3 often not needed/relevant

• rdf:type’s are often asserted, so no automatic classification is required

• Links are often asserted, so automatic linking not required

• So we can simplify to …

INTERLINK D4 Appendix 4

x/y L1 L2 L3

L1 Situation 1 Situation 2 Situation 5

L2 Situation 3 Situation 4 Situation 7

L3 Situation 6 Situation 8 Situation 9

9. September 2017

BASIC LINKING: FOUR MOST
RELEVANT LINKING SITUATIONS

We will now analyse a simple example and show for each of the four

situations what can be inferred (for a given intended linking)

INTERLINK D4 Appendix 4

x/y L1 L2

L1 Situation 1 Situation 2

L2 Situation 3 Situation 4

9. September 2017

EXAMPLE: LEGENDA

INTERLINK D4 Appendix 4

Class

Individual

Property

9. September 2017

EXAMPLE: GRAPHICALLY (BOTH
CLASSES ARE L1)

INTERLINK D4 Appendix 4

x:Red

Car
y:Car

x:My

Red

Car

y:My

Car

Classes/

Properties

Individuals

x

ontology

y

ontologyLO

x:colour y:color

rdf:type rdf:type

owl:sameAs

rdfs:subClassOf

owl:equivalentProperty

9. September 2017

EXAMPLE: INTENDED LINKING
BETWEEN X AND Y
CLASSES/PROPERTIES IN VENN-
DIAGRAM

INTERLINK D4 Appendix 4

x:RedCar is a subclass of y:Car .

x:colour is equivalent property for y:color .

This knowledge becomes part of the LO

9. September 2017

EXAMPLE: SITUATION 1: L1/L1
(FULL CORRESPONDENCE TO
DIAGRAM)

Ontology x asserts:

x:RedCar rdf:type owl:Class .

x:colour rdf:type owl:DatatypeProperty ;

rdfs:range xsd:string .

Ontology y asserts:

y:Car rdf:type owl:Class .

y:color rdf:type owl:DatatypeProperty ;

rdfs:range xsd:string .

LO asserts:

x:RedCar rdfs:subClassOf y:Car .

x:colour owl:equivalentProperty y:color .

INTERLINK D4 Appendix 4 9. September 2017

EXAMPLE: SITUATION 1: L1/L1
WHAT CAN BE INFERRED?

In case we first extra assert

x:MyRedCar rdf:type x:RedCar .

we can infer:

x:MyRedCar rdf:type y:Car .

In case we next extra assert

x:MyRedCar x:colour “red”^^xsd:string .

we can extra infer:

x:MyRedCar y:color “red”^^xsd:string .

In case we next extra assert:

y:MyCar rd:type y:Car .

x:MyRedCar owl:sameAs y:MyCar . *

we can extra infer:

y:MyCar x:colour “red”^^xsd:string .

y:MyCar y:color “red”^^xsd:string .

INTERLINK D4 Appendix 4

In case we first extra assert

y:MyCar rdf:type y:Car .

(we cannot infer:

y:MyCar rdf:type x:RedCar .)

In case we next extra assert

y:MyCar y:color “red”^^xsd:string .

we can extra infer:

x:MyCar x:colour “red”^^xsd:string .

In case we next extra assert:

x:MyRedCar rdf:type x:RedCar .

y:MyCar owl:sameAs x:MyRedCar . *

we can extra infer:

x:MyRedCar y:color “red”^^xsd:string .

x:MyRedCar x:colour “red”^^xsd:string .
* In

Linking

Data Set

9. September 2017

EXAMPLE: SITUATION 2: L1/L2 –
ONTOLOGY Y GETS SMARTER (L2)

Since y:Car has no restriction wrt the relevant property

y:color this class is already L2 wrt this property

I.e. ontology y cannot be made ‘smarter’ wrt this property

So the situation is the same as Situation 1

Same inferences as in Situation 1

INTERLINK D4 Appendix 4 9. September 2017

EXAMPLE: SITUATION 3: L2/L1 -
ONTOLOGY X GETS SMARTER (L2)

Ontology x asserts as extra in red:

x:RedCar rdf:type owl:Class ;

rdfs:subClassOf [a owl:Restriction ;

owl:hasValue "red"^^xsd:string ;

owl:onProperty x:colour

] .

Ontology y stays the same (i.e. stays level L1)

INTERLINK D4 Appendix 4 9. September 2017

EXAMPLE: SITUATION 3: L2/L1
WHAT CAN BE INFERRED?

In case we first extra assert

x:MyRedCar rdf:type x:RedCar .

we can infer:

x:MyRedCar rdf:type y:Car .

x:MyRedCar x:colour “red”^^xsd:string .

x:MyRedCar y:color “red”^^xsd:string .

In case we next extra assert:

y:MyCar rd:type y:Car .

x:MyRedCar owl:sameAs y:MyCar . *

we can extra infer:

y:MyCar x:colour “red”^^xsd:string .

y:MyCar y:color “red”^^xsd:string .

INTERLINK D4 Appendix 4

In case we first extra assert

y:MyCar rdf:type y:Car .

)we cannot infer:

y:MyCar rdf:type x:RedCar .)

In case we next extra assert

y:MyCar y:color “red”^^xsd:string .

we can extra infer:

x:MyCar x:colour “red”^^xsd:string .

In case we next extra assert:

x:MyRedCar rdf:type x:RedCar .

y:MyCar owl:sameAs x:MyRedCar . *

we can extra infer:

x:MyRedCar y:color “red”^^xsd:string .

x:MyRedCar x:colour “red”^^xsd:string .

Which is consistent with the restriction…
* In

Linking

Data Set

9. September 2017

EXAMPLE: SITUATION 4: L2/L2
BOTH X AND Y GET SMARTER

Again, since y:Car has no restriction wrt the relevant property

y:color this class is already L2 wrt this property

I.e. ontology y cannot be made ‘smarter’ wrt this property

So the situation is the same as Situation 3

Same inferences as in Situation 3

INTERLINK D4 Appendix 4 9. September 2017

BASIC LINKING
OBSERVATIONS

L1 level classes are most likely for existing/practical specifications

When in control we can have the ambition/manage to make them L2 or

even L3

On individual-level we can use owl:sameAs to compensate missing ‘L2-

ness’

Class-level L2 gives more inferences then L1 in case the property has

constrained values for that class (i.e. reflects a ‘necessary condition’)

We can only exploit ‘L2-ness’ if the relevant properties are linked too

(preferable via property equivalence, like in the example)

We can define L2 variants of L1 classes in the Linking Ontology and

make them equivalent to the originating L1 variants. This way we do not

change the original ontology (typically under foreign authority) but

provide our own interpretation/’more precise variant’ of it.

INTERLINK D4 Appendix 4 9. September 2017

EXAMPLE OF ADDING KNOWLEDGE
TO THE LO

Ontology x asserts:

x:RedCar rdf:type owl:Class .

x:colour rdf:type owl:DatatypeProperty ;

rdfs:range xsd:string .

Ontology y asserts:

y:Car rdf:type owl:Class .

y:color rdf:type owl:DatatypeProperty ;

rdfs:range xsd:string .

LO assert:

l:RedCar rdf:type owl:Class ;

l:RedCar owl:EquivalentClass x:RedCar ;

rdfs:subClassOf [a owl:Restriction ;

owl:hasValue "red"^^xsd:string ;

owl:onProperty x:colour

] .

l:RedCar rdfs:subClassOf y:Car .

x:colour owl:equivalentProperty y:color .

INTERLINK D4 Appendix 4 9. September 2017

MORE BACKGROUND INFO ON
L1/L2/L3 LEVELS /1

L1: The class is just declared

L2: The class is declared and restrictions are added that indicate “necessary

conditions” for one or more properties (can be a specific value or a range or

complex combination, etc.)

Example (having 2 such conditions):
RoadSegment rdf:type owl:Class ;

rdfs:subClassOf [a owl:Restriction ;

owl:hasValue "transport"^^xsd:string ;

owl:onProperty :functionPerformed

] .

rdfs:subClassOf [a owl:Restriction ;

owl:hasValue "vehicles"^^xsd:string ;

owl:onProperty :applicationArea

] .

L3: Like L2 but now so many restrictions that this set of restrictions is sufficient

to fully define the class. In other words: the class and the set of combined

restrictions are equivalent. So when you encounter an individual in the real

world and you can see/know that it has all the values for those properties (in

general: ‘it satisfies all restrictions’) it is a member of that set defined by the

restrictions and hence, because of the equivalence, a member of the class. In

short: automatic classification becomes possible, you don’t have to assert

anymore that MyRoadSegment rdf:type :RoadSegment.
INTERLINK D4 Appendix 4 9. September 2017

ADVANCED LINKING ISSUES

In practice we see the need for more complex constraints/rules

In general: all of the those supported by the OWL-RL variant, involving

Intersections, unions

Restriction classes (cardinalities, hasValue, all/someValuesFrom etc.)

It seems handy to distinguish two Kind of LO

Alignment Ontologies (AOs), and

Conversion Rule Sets (CRSs), involving OWL-RL and beyond (OWL-DL,

SHACL...)

Even involving ‘calculations’ (via SPARQL or even coding etc.)

CRSs might import AO (as basic CRS)

Some Tools (like TBC) can convert OWL-RL based AO to SHACL

INTERLINK D4 Appendix 4 9. September 2017

SPECIAL ISSUE: CLASSES <>
PROPERTIES <> INDIVIDUALS

Depending on the ‘Modelling Style’, attributes and relationships can be

modelled in different ways: as classes (COINS, CB-NL, INTERLINK Powerful

Modelling Style, …) or as properties (INTERLINK Simple Modelling Style, …)

Since we also want to interrelate/map such ontologies (for conversion and/or

linking data) the issue arises of mapping "classes” to/from “properties“

A small example is depicted in the next sheet

INTERLINK D4 Appendix 4 9. September 2017

:Road

:Width

:Road_1

:hasAttributeValue Width_1 .

:Width_1

:numericalValue “10.0”^^unit:M .

:Road

:width

:Road_1

:width “10.0”^^xsd:float .

Link.ttl WidthThePropertyWay.ttlWidthTheClassWay.ttl

import import

owl:equivalentClass

Special Issue: Example: Classes <> Properties

9. September 2017 INTERLINK D4 Appendix 4

THANK YOU FOR YOUR ATTENTION

