

Workshop on Open Data

CEDR – CONFERENCE OF EUROPEAN DIRECTORS OF ROADS TRA 2018

JOOST VANTOMME, SMART MOBILITY DIRECTOR

VIENNA, 17 APRIL 2018

Thursday, 03 May 2018

1. ACEA : what and who

BMW Group

AKTIENGESELLSCHAFT

DAF DAIMLER IVECO

VOLKSWAGEN

AKTIENGESELLSCHAFT

DAIMLER

GROUPE RENAULT

AKTIENGESELLSCHAFT

DAIMLER IVECO

VOLVO

12.6 million Europeans work in the automotive sector

3.3 million jobs in automotive manufacturing

€396 billion in tax revenues (EU15)

€50.1 billion in R&D spending, largest private investor

€90 billion positive net trade contribution

2. CCAM and data

Cooperative

Connected

Automated

COOPERATIVE, CONNECTED AND AUTOMATED MOBILITY

Day 1	Da	iy 2	Day 3	s	Day 4	bility	
Awareness Star	ts Automat	ion Starts	Cooperation	n Starts	Future Mo		
"I share where I a	am	vhat I see"	"We share	e our	"We coordin	nate all	
and what I hear	." "I share v		intentio	ons"	manoeuv	vres"	
Hybrid Connectiv	vity Hy	brid	Hybri	d	Hybrid	d	
ITS G5+LTE-V	+	5G	+ New techr	nologies	+ new techn	ologies	
Advanced Drive	er Some	Some Roads		Most Roads		Fully Automated	
Assistance Syste	m Human	Human Back-up		No Human Back-up			
2017 20	2021	2025	2030	2035	2040	2045	

- Sense of reality needed -> not all vehicles and infrastructures are connected today
- Step by step approach on connectivity and automation
- Starting blocks for V2V/V2I/I2V/V2X
- Invest once principle. Vehicles are not smartphones ! Hard choices to be made: sensors, lidars, camera technology, communications technology, back-end servers

FOUR CATEGORIES OF DATA/USE CASES

1. "Public interest" data -> Reciprocity

Data relevant to traffic safety (e.g. local hazard warning, ITS-related services)

2. Data triggered by the vehicle -> B2B

Services available across brands: non-differentiating vehicle data (e.g. ambient temperature, traffic flows, road sign recognition, street parking)

3. Vehicle specific technical data

Brand-specific services & component analysis/product improvement: link to suppliers, IP protected (e.g. ECU monitoring, chassis sensor data)

4. Data triggered by driver -> GDPR

Personalised services

(e.g. vehicle position, speed, insurance, fleet, roadside assistance, diagnostic)

Examples of events generated by the vehicle

- Accident warning
- Unexpected stationary vehicle
- Slippery road warning
- Hard breaking event

Examples of events generated by the traffic infrastructure

- Fixed infra static data (eg speed limit)
- Fixed infra dynamic data (dynamic speed limits)
- Temporary infra static data (road closed, diversion)
- Temporary infra dynamic data (alert board)
- Roadworks

Examples of C-ITS use cases

Road safety related:

- Emergency vehicle approaching
- Slow or stationary vehicle(s)
- Traffic jam ahead warning
- Hazardous location notification

Cooperative traffic efficiency:

- Traffic information and smart routing
- Traffic Light Assist
- Green Light Optimal Speed Advisory (GLOSA) / Time To Green (TTG)
- Road works warning
- Weather conditions

Cooperative local services:

- Off street parking information
- Park & Ride information
- Information on AFV fueling & charging stations
- Zone access control for urban areas

ACEA POSITION ON ACCESS TO DATA

- OEMs prepared to make data available, when the following principles are respected:
 - \circ Safety, security, vehicle integrity and liability
 - Customer choice (repair and maintenance, as well as mobility services)
 - o Fair competition
 - Privacy and data protection
 - Interoperability (standardised approach, cfr ISO)
 - o Return on investment
- <u>Direct access to data</u> inside the vehicle poses a <u>threat</u> to: safety, security and integrity of the vehicle
- Dongles connected to an OBD interface <u>pose a risk</u> to the vehicle
- Focus on providing off-board access to data through Extended Vehicle model

2. POLICY DIALOGUE

CONNECTED DATA POLICIES

Types of data

Machine generated data, raw data
Interpreted data
Anonymised data
Personal data
Meta data
(...]

Who generates the data ? Who processes and interpretes the data ? Who uses the data ?

Balance the interests

Quality monitoring
Intellectual property rights
Trade secrets
Privacy
Private interest
Public interest
Competitiveness of the industry

3. GOING FORWARD

- 1. Not all is connected today. Step by step approach
- 2. Invest once principle: first time right, safety, security and sustainability at stake
- 3. Competitive landscape among vehicle manufacturers
- 4. Policies should facilitate, not hamper innovation
- 5. And... let's continue to talk to each other !

GOING FORWARD

Dialogue with CEDR CAD group

- ✓ Understand each other's ecosystem
- ✓ Demystify connectivity, automation, data
- ✓ Exchange on ongoing projects
- ✓ Identify barriers and opportunities, solutions
- ✓ First intro meeting held with CAD group on 8 March 2018, Birmingham

□Identify which sources, use cases and data: vehicle originated, road centres originated, other third parties devices and services

□No duplication of dialogue for a : sync with the Data Task Force member states/industry

ACEA POSITION PAPERS On Smart Mobility and Cybersecurity

Principles of Automotive Cybersecurity

https://goo.gl/L7SdRX

Access to Vehicle Data for Third-party Services

https://goo.gl/Lf8vAB

Principles of Data Protection in relation to CAD

https://goo.gl/37iCHV

Joost Vantomme Smart Mobility Director jv@acea.be +32 2 738 73 69

THANKYOU FORYOUR ATTENTION

ACEA

European Automobile Manufacturers Association

@ACEA_eu
www.ACEA.be