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Executive summary 

This deliverable is the first MANTRA deliverable concerning the impacts of connected and 
automated driving functions on NRA Policy targets. The main purpose of this document is to 
conduct and summarize a comprehensive state of the art on the impacts of connected and 
automated driving on travel demand, travel behaviour, traffic flow, safety and energy. The 
review is based on ongoing and recently completed EU- and national projects, and a 
comprehensive literature review of key publications and articles on the topic.  

The variety of impacts and impacts mechanisms of connected and automated driving, and 
the related key performance indicators (KPIs) are presented and the most relevant for 
MANTRA work selected. The later chapters present the main findings of the review of the 
CAD impacts on mobility and travel behaviour, driver behaviour and traffic flow, traffic safety, 
user acceptance, energy and environment. 

Most of the impact estimates in the literature are based on either expert evaluation or traffic 
simulations. The other source for current estimates are available field studies on driver 
assistance systems. It is hence very important to continue following the studies in this area, 
to complement the results when on-the-road testing of automation in real traffic with other 
road users present, and data received from those tests, is available in large scale.  

Moreover, even the models to estimate impacts, e.g. traffic microsimulation models, still need 
adjustment and parameters designed specifically for automated vehicles. The current vehicle 
behavior models are based on the behaviour of human drivers. In addition, the behavior of 
human drivers might also change when interacting with automated vehicles. The 
development of the technology also have great impact on the area and conditions where 
automation can be used (operational design domain, ODD), and hence can have impacts in. 
The variety of impact mechanisms need to be kept in mind when considering the potential 
impacts of connected and automated driving not only to traffic safety, but also other impact 
areas.  

The studies reviewed for this paper give an overview of the expected impacts of the 
deployment of connected and automated driving. As the reader can see when going through 
the various impact areas, the expectations of the magnitude of the impacts vary a lot. Where 
someone is expecting the traffic safety to be improved by 90%, the others are much more 
conservative and present only one-digit estimates. The same applies for other impact areas, 
even fully contradicting estimates exist.  

As many of the studies summarized in this deliverable also remind: automation is not the 
only megatrend that affects the road transport in the oncoming years. Shared mobility is one 
issue, which may have great impact on how people select to move around. In addition, 
electrification have for sure impact on CO2 emissions, and maybe even the travelling 
patterns.  
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1 Introduction 

The CEDR Transnational Research Programme was launched by the Conference of 
European Directors of Roads (CEDR). CEDR is the Road Directors’ platform for 
cooperation and promotion of improvements to the road system and its infrastructure, as 
an integral part of a sustainable transport system in Europe. Its members represent their 
respective National Road Authorities (NRA) or equivalents and provide support and 
advice on decisions concerning the road transport system that are taken at national or 
international level. 

The participating NRAs in the CEDR Call 2017: Automation are Austria, Finland, 
Germany, Ireland, Netherlands, Norway, Slovenia, Sweden and the United 
Kingdom. As in previous collaborative research programmes, the participating members 
have established a Programme Executive Board (PEB) made up of experts in the topics 
to be covered. The research budget is jointly provided by the NRAs as listed above. 

MANTRA is an acronym for "Making full use of Automation for National Transport and 
Road Authorities – NRA Core Business".  MANTRA responds to the questions posed as 
CEDR Automation Call 2017 Topic A: How will automation change the core business of 
NRA’s, by answering the following questions:  

• What are the influences of automation on the core business in relation to road 
safety, traffic efficiency, the environment, customer service, maintenance and 
construction processes? 

• How will the current core business on operations & services, planning & building 
and ICT change in the future? 

An earlier CEDR project DRAGON (Vermaat et al. 2017) already looked at the impacts 
of three automated driving use cases in specific sites revealing the need to carry out a 
comprehensive study on the impacts on the road authorities and operators on the 
European scale. 

MANTRA work started with the analysis of vehicle penetrations and Operational Design 
Domain (ODD) coverage of NRA-relevant automation functions up to 2040. This part is 
reported in MANTRA Deliverable D2.1. Work-package 3, for which this D3.1 is the first 
deliverable, concentrates on the impacts of connected and automated driving, and how 
the impacts relate to the role and policy targets of NRAs. The following work-packages 
continue from this, and assess and discuss the consequences of automation functions 
on infrastructure, and how the deployment of automation changes the core business of 
road operators.  

This deliverable is the first deliverable concerning the impacts of connected and 
automated driving functions on NRA Policy targets. The main purpose of this document 
is to conduct and summarize a comprehensive state of the art on the impacts of 
connected and automated driving on travel demand, travel behaviour, traffic flow, safety 
and energy. The review is based on ongoing and recently completed EU- and national 
projects, and a literature review of key publications and articleson the topic. The 
deliverable starts by introducing the variety of impacts and impact mechanisms in 
connected and automated driving (CAD), and the related key performance indicators 
(KPIs). The later chapters present the main findings an extensive review of the CAD 
impacts on mobility and travel behaviour, driver behaviour and traffic flow, traffic safety 
and user acceptance, and energy and environment. 
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The next steps in WP3 is to assess the implications of selected (see deliverable D2.1) 
automated driving functions on mobility, travel behaviour, and energy with existing 
models and the literature review presented in this deliverable. The findings of the review 
and the next steps in WP3 will be discussed in a mini workshop with CEDR in 
September 2019.  

In addition, simulation models will be utilised to assess the impacts of connected and 
automated driving on traffic flow and safety. Finally, impacts of automation on efficiency 
in operational processes and maintenance will be assessed and all the assessments will 
be summarized as impacts of automation on NRA key policy targets, based on the 
literature review, models, and expert interviews and expert evaluation. 
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2 Impact mechanisms and KPIs for automated driving  

2.1 Impacts of automated driving - a framework 

2.1.1 Introduction 

Trilateral Impact Assessment Sub-Group for ART introduced a high-level framework for 
assessment of the impacts of road traffic automation. The framework included new material, 
but was partly based on the frameworks presented earlier by US DOT (Smith et. al. 2015) 
and FESTA (FOTNet, 2014). The main purpose of the presented framework was to support 
governments in their policy analysis and long-range scenario-based planning. Additionally, 
manufacturers can use the document to better understand the potential benefits of new 
automated systems. Moreover, both designers of Field Operational Tests (FOTs) and impact 
assessment experts can use the document as a starting point for their evaluation work. 
(Innamaa et. al. 2018). 

2.1.2 Classification of impacts 

The basic classification of AV impacts is to divide the impacts into two large groups: direct 
and indirect impacts. Direct impacts are those which have a relatively clear cause-effect 
relationship with the primary activity or action. They are generally easier to measure and 
assess, and are often immediate to short-term in nature. In Figure 1 direct impacts are the 
ones in upper left-corner, highlighted with red circle (Innamaa et. al. 2018).  

 

 

Figure 1. Impact areas by Trilateral Impact assessment sub-group. Direct impacts highlighted 
with the red circle. (Innamaa et. al. 2018) 
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Indirect impacts are the second group of impacts. Indirect impacts summarize the broader 
effects of the individual direct impacts. They are typically harder to measure and have a 
longer time horizon, (Innamaa et. al. 2018). 

2.2 Overview of the recognized impact mechanisms and impact 
paths for automated driving 

2.2.1 General impact mechanisms for assessment 

The trilateral working group (Innamaa et. al. 2018) proposed the nine basic impact 
mechanisms for road transport automation related studies. These originated from Kulmala’s 
(2010) nine safety impact mechanisms. The main idea of the impact mechanisms list is to 
ensure that all impacts, no matter if intended or unintended, direct or indirect, short-term or 
long-term, are covered in the impact assessment. Trilateral group recommends using these 
mechanisms for all impact areas of AD studies (Innamaa et. al. 2018). 

1. Direct modifications of the driving tasks, driver behavior or travel experience 
2. Direct influence by physical and/or digital infrastructure 

3. Indirect modification of AV user behavior 
4. Indirect modification of non-AV user behavior 

5. Modification of interaction between AVs and other road users 
6. Modification of exposure/amount of travel 

7. Modification of modal choice 
8. Modification of route choice 
9. Modification of consequences due to different vehicle design 

These mechanisms are intended to be non-overlapping and all-inclusive, i.e. all impacts fall 
under some, and preferably only one mechanism to avoid double counting. Innamaa et. al. 
(2018) also present a comprehensive list of supporting questions that help to understand 
what is meant by each mechanism.  

2.2.2 Impact paths for automated driving 

Innamaa et. al. (2018) introduced impact paths for automated driving for all impact areas 
(safety, network efficiency, environment, mobility, and quality of life). These were later 
updated for the workshop on Automated Vehicles impact pathways workshop held in Leeds 
on April 2019. The latest version of these pathways is presented in Figure 2.  
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Figure 2. Impact pathways for automated driving (Originally Innamaa et. al. 2018, updated 2019). 
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2.3 Key Performance Indicators (KPIs) for automated driving 

2.3.1 Introduction 

Innamaa & Kuisma (2018) reported the results of Trilateral group’s KPI survey i.e. selected 
KPIs for assessing the impacts of automation in road transport. It is important to notice, that 
these KPIs are mainly in societal level, and hence such, which will be often taken into 
account when calculating the cost-benefit -analysis for investments. The furher work in 
MANTRA will however, concentrate more into the KPIs most relevant to NRAs policy targets. 

The selected KPIs are based on an expert survey conducted during the second half of 2017. 
Altogether 77 experts from EU, US and Japan participated the survey. The impact areas 
included into the survey were the following: 

 
Vehicle operations/automated vehicles 

Vehicle operations is one of the four direct impact areas of automated driving. It includes 
acceleration, deceleration, lane keeping, car following, lane changing, and merging in 
adjacent lane (Innamaa & Kuisma, 2018). In MANTRA, this area is of interest due to planned 
simulations and the parameters to be selected for simulations. 

The listed KPIs were rated with the scale 0 = not at all important to 6 = extremely important. 
The following KPIs were rated most important (average > 4.5) for vehicle operations impact 
assessment (Innamaa & Kuisma, 2018): 

 Number of instances where the driver must take manual control / 1000 km  

 Mean and maximum duration of the transfer of control between operator/driver 
and vehicle (when requested by the vehicle)   

 Mean and maximum duration of the transfer of control between operator/driver 

and vehicle (manual overrule)  
 Number of emergency decelerations per 1000 km 

 Mean and minimum time-headway to the vehicle in front in car following situations 
 Minimum accepted gap at intersections or in lane changes 

 Mean and minimum distance (m) to the vehicle in front in car following situations 
(headway 5 s or less)  

When applying these to the MANTRA use cases, the take-overs may not be as important as 
for L3, but of course, L4 may require take-overs, too. 

 
Use of automated driving 

Use of automated driving is highly relevant in especially lower levels of automation, where 
driver can still select to activate (or not to activate) automated driving functions when within 
defined ODD. For scaling up the impacts, it is a key factor. The following KPIs were rated as 
3 most important ones concerning the use of automated driving functions (Innamaa & 
Kuisma, 2018). 

 Number of instances where the driver must take manual control / 1000 km  
 Use of automated driving functions (% of km within ODD) 
 Comprehensibility of user interface, subjective scale 

In mixed traffic situations, the following were highlighted important, too: 
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 Inappropriate use of automated driving functions in lower automation levels i.e. 
driver not monitoring the environment and traffic, even if he is supposed to do so 
(number of events per 100 km) 

 

The actual use of the AD functions is very important to be included in impact evaluation. 
Even if we assume a certain penetration level for automated vehicles in the fleet, we cannot 
assume the usage of the automated driving functions being 100% of the time or distance for 
those vehicles.  

On one hand, use of automated driving functions can be approached by careful analysis of 
ODDs - and only include impacts on those parts of the network (and those environmental 
conditions) within each ODD. On the other hand, if the user has the option of selecting 
whether to activate automated driving functions within ODD, this is an additional issue to be 
taken into account, and not just assuming 100% usage within ODD. These will be further 
elaborated in chapter 5.4. 

 
Safety 

Safety is typically measured as a number of fatalities, injuries, or property damage for vehicle 
occupants or other road users. Other road users may include pedestrians, bicyclists, slow-
moving vehicles, construction workers, and first respondents. The following KPIs were rated 
as most important ones (Innamaa & Kuisma, 2018). 

 Number of crashes (distinguishing property damage, and crashes with injuries 
and fatalities) in total, and per 100 million km 

 Numbers of conflicts encountered where time-to-collision (TTC) is less than a pre-
determined threshold / 100 million km 

 Number of instances with hard braking (high deceleration) / 1000 km 
 

In addition, the number of take-overs was rated high in importance, but it is not as 
unambiguous KPI as the previously listed. Especially in L3 and L4 the take-overs may and 
will happen, but some of them may be driver initiated, and some of them expected and 
planned, when approaching the end of ODD. Hence, more elaboration is needed for this KPI, 
and potentially more accurate KPIs would be e.g. “unplanned take-over per driven distance” 
or if taking the position of the driver “unexpected take-overs per driven distance”.  
 
Energy and environment 

This category includes both the energy consumption of the vehicle through a driving cycle, 
and tailpipe emissions of pollutants including greenhouse gases. The direct 
energy/emissions impacts come from the change in the driving cycle. It is important to notice 
that changes in vehicle propulsion (e.g. electric vehicles) may also have a significant effect 
on tailpipe emissions. The following KPIs were rated most important (Innamaa & Kuisma, 
2018): 

 Energy consumption of a vehicle (liters/100 km or miles per gallon or electric 

equivalent) 
 Tailpipe carbon dioxide (CO2) emissions in total per year and per vehicle-km or 

mile 
 Tailpipe criteria pollutant emissions (NOX, CO, PM10, PM2.5, VOC) in total per 

year and per vehicle-km or mile. 
 

Automation may have effect on the above mentioned by speed selection, speed variance, 
and other driving style factors. Additionally, platooning of heavy vehicles is expected to have 
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great impact on energy consumption and emissions. Note that noise was not listed as a KPI 
in the original work of CARTRE or Trilateral WG. It was, however, added later, as shown in 

Figure 3.  
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Personal mobility 

Personal mobility is mobility from individual user’s point of view, and it includes journey 
quality (comfort, use of in-vehicle time), travel cost, and whether the option is overall 
available for someone. It also includes equity and accessibility considerations. The following 
KPIs were selected as the most important ones overall (Innamaa & Kuisma, 2018): 

 Mean distance travelled per day 
 Total time spent travelling per day per person 

 Type and duration of in-vehicle activities when not operating the vehicle (high 
automation levels) 

 User perception of travelling quality & User perception of travelling reliability 
 

Travel behavior 

A traveler may change his/her travel behavior due to automated transport options. There 
may be more or fewer trips. In addition, modes, routes and destinations may change. 
Especially the high level of automation is expected to have significant effect on personal 
mobility and travel behavior. The following KPIs were rated as most important ones overall 
(Innamaa & Kuisma, 2018): 

 Share of transport modes (modal split) per week (based on the total number of 
trips) 

 Number and type of trips per week (in total and per inhabitant) 
 Total duration of trips per week by mode (in total and per inhabitant) 
 Network-level journey time by mode per week. 

 

Network efficiency 

Network efficiency refers to lane, link or intersection capacity and throughput in a selected 
network level, e.g. regional. It also refers to travel time and reliability of travel time. The 
following KPIs were rated highest (Innamaa & Kuisma, 2018): 

 Throughput, i.e. number of vehicles per hour through a particular road section or 
intersection approach, normalized to number of lanes and proportion of green 

time (if relevant) 
 Maximum road capacity (for a given road section) 
 Road capacity at design speed (for a given road section). 

These KPIs are of particular interest for MANTRA as they touch the core business of NRAs 
and hence the objectives of the MANTRA project directly.  

 

Asset management  

Asset management refers to management of physical and digital infrastructure for road 
transport. The following KPIs were selected as the most important ones (Innamaa & Kuisma, 
2018): 

 Availability and coverage of V2I infrastructure for automation 
 Frequency of pothole occurrence (number of potholes per 100 km), In MANTRA it 

is proposed to widen this KPI to “severe road damages on the main carriageway” 
rather than limit it to potholes only 
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 Use of hard shoulder (for hard-shoulder running or as an emergency stop area for 
automated vehicles) 

In addition to the above mentioned, road markings and their visibility is seen as important 
and may differ within/beyond ODD stretches of the roads.  

The focus of the Trilateral group’s KPI survey (Innamaa & Kuisma, 2018) was the users 
perspective rather than the road operator perspective which becomes particularly clear in the 
category Asset management. Therefore the selection within the categorie Asset 
management, which is key to NRAs, needs to be considered with caution and looked into 
with more detail. From the perspective of NRAs critical KPIs to be added should be, at least:  

 Pavement deterioration (rutting measurement results in mm each year)  

 Road marking renewal cycles (average renewal period following ODD 
requirements for retroreflectivity and luminance)  

 Winter maintenance (necessary maximum duration for clearing of roads) 
 Required satellite positioning land stations (max. distance between them in m)   

 Required safe harbours and emergency lanes (max. distance between them in m) 
In addition KPIs of traditional road asset management can still be relevant when evaluating 

impacts of AVs.  

 
Costs 

Costs typically include capital, maintenance and operating costs. The most important KPIs 
for automated road transport overall were the following (Innamaa & Kuisma, 2018): 

 Capital cost per vehicle for the deployed system (infrastructure, monetary value) 

 Cost of purchased automated vehicle (market price, monetary value) 
 Operating costs for the deployed system (per vehicle-hour or per vehicle-km, 

monetary value) 

For the higher level of automation (L4 - L5) the following costs were the most important ones 
(Innamaa & Kuisma, 2018): 

 Cost per trip (for user, monetary value) 
 Operation and maintenance cost for digital infrastructure (per road km, monetary 

value) 
 Investment cost for connectivity network (per road km, monetary value) 

In addition to the ones selected by Innamaa & Kuisma (2018), at least the following costs are 
important from MANTRA perspective: 

- Cost for infrastructure renewal (if e.g. extra lanes, geofencing, safe harbours, etc. is 
required for automated vehicles to be able to operate on the road). 

- Cost of additional maintenance (mentioned also under asset management above) 

 

Public health 

Automation may also impact public health (physical and mental) of individuals and entire 
communities via safety, air pollution, amount of walking and biking, as well as access to the 
needed destinations, such as medical care, employment, education, recreation and services. 
The following KPIs were selected to be the most important ones (Innamaa & Kuisma, 2018): 

 Modal share (%) and total mileage travelled (km) by active modes of 
transportation 

 Number of (traffic related) fatalities and injuries per year per million inhabitants 
 Proportion of people with improved access to health services. 
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As for the cost KPIs, public health part also had very few respondents, and the results should 
hence be taken as indicative. 

 

Land use 

Automation may affect the use of land for transport functions. Longer-term land-use changes 
may include community planning. The most important KPIs for land use were the following 
(Innamaa & Kuisma, 2018): 

 Number of parking slots 
 Density of housing 

 Location of parking. 
In addition, at higher automation levels, especially for robo-taxis the passenger pick-up and 

drop-of locations and accessibility to those locations are essential.  
 
Economic impacts 

Improved safety, use of travel time, freight movement, travel options, public health, land use 
and effects of changes emissions will have longer-term economic impacts. Automation may 
also have substantial impact on labor markets and industries. For economic impacts, the 
following KPIs were rated as most important ones for both overall, and for higher automation 
levels L4 - L5 (Innamaa & Kuisma, 2018): 

 Work time gained due to ability to multitask while travelling (hours per year, 

overall and per capita; monetary value) 
 Socio-economic cost benefit ratio  

 Work time lost from traffic crashes (hours per year, overall and per capita; 
monetary value). 

 

It is good to notice that the participants of the survey were free to select what kind of vehicles 
they are considering when answering. 49% of the respondents selected passenger car, 4% 
automated shuttle bus/pod, 4% automated truck and 42% mixed traffic, which included also 
vulnerable road users.  

In addition, the participants were asked to select themselves the SAE level they are 
considering when selecting the most important KPIs ; 22% selected level “assist”, i.e. level 1 
- 2, 29% SAE 3 and 49% SAE 4 - 5. (Innamaa & Kuisma, 2018). If there were remarkable 
differences between the lower and higher level of automation and related KPIs, those are 
specifically mentioned in the text above. Additionally, a few KPIs highly relevant to MANTRA 
work and NRAs are added and specifically highlighted. 

Within the CARTRE project (Rämä & Kuisma, 2018) a comprehensive list of KPIs was 
defined based on the work of the Trilateral ART Working Group. The impact areas and the 
KPIs within each area are summarized in Table 1. 
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Table 1. Impact areas and KPIs from CARTRE project (Rämä & Kuisma, 2018). 

 Impact area KPIs 

Use & acceptance • Use of automated driving functions 

• Requirement of attention and 
concentration (for driving) 

• General feeling/acceptance of 
general public 

• Trust (for CAD users) 

• Perception of reliability 

• Perceived usefulness 

• Perceived comfort 

• Feeling of safety (from the 
perspective of vehicle 
users) 

• Feeling of control of the 
overall situation (from the 
perspective of vehicle 
user) 

• Intended use 

Driver behavior • Maximum speed v95 

• Average speed 

• Eco-driving 

• Unnecessary decelerations/low 
speed due to VRU 

• Time headway 

• Post encroachment time 
(PET) 

• Adaptability to traffic 
conditions 

• Reaction time. 

Mobility & travel 
behavior 

• Number of trips 

• Total travel time 

• Total kilometres travelled 

• Share of each transport mode (car) 

• Share of each transport mode 
(public transport)  

• Share of each transport mode 
(bicycle) 

• Travelling on peak hours 
(timing) 

• Travelling reliability 

• Travelling comfort 

• Accessibility of lower 
density areas. 

Network efficiency • Road capacity 

• Total or average travel 

• time per road-km 

• Intersection capacity 

Energy and 
environment 

• Energy savings due to reduced air 
resistance 

• Energy use for in-car IT 
technology 

Public health and 
safety 

• Total mileage travelled by active 
modes of transportation (walking 
and bicycle) 

• Proportion of people with improved 
access to health services 

• Improved access to recreation and 
other services 

• Social isolation 

• Number of fatalities 

• Number of injuries 

Land use • Underground parking space in city 
centre areas 

• Street parking space in city centre 
areas 

• Location of employment 
(distance from city centre) 

• Number of lanes 

Economic analysis • Growth of the automotive industry 
(manufacturing) 

• Growth of transport services sector 

• New established businesses 

• Total factor productivity / 
multi-factor productivity 
estimates 

• Several additional costs 
and investments related 
KPIs 
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2.3.2 Selected MANTRA KPIs 

The selection of the KPIs for MANTRA work and for this deliverable is a subset of the 
comprehensive list of KPIs defined by the Trilateral WG and CARTRE, while considering the 
importance of the KPIs to road operators and their relevance for the following work that 
would involve traffic simulation analysis. Namely, we have selected those KPIs that could be 
assessed with simulation, or could be useful as input to simulation (Table 2). 

Table 2. Selected KPIs for MANTRA work. 

Impact area KPIs 

Mobility and travel 
behaviour 

• Number of trips 

• Value of travel time 

• Total kilometers travelled  

• Share of car and public transport 

• Travelling on peak hour 
(timing) 

• Travelling reliability 

• Travelling comfort 

• Accessibility 
Driver behavior 
and traffic flow 

• Driving speed and speed variability 

• Time headway 

• Capacity 

• Traffic stability 

• Travel time 

Traffic safety • Number of injuries 

• Number of fatalities 

• Number and severity of conflicts 

• Surrogate safety 
measures 

• User acceptance 

Energy and 
environment 

• Energy 

• Carbon 

• Noise 

 

All the impact areas and KPIs in Table 2 will be further elaborated in the Chapters 3 - 7. The 
futher work in MANTRA will target the KPIs most relevant to NRAs policy targets. These will 
be reported later in MANTRA deliverable D3.2. 
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3 Impacts of connected and automated driving on 
Mobility & Travel Behaviour 

Even if there is a lot of work done in defining the impact areas, impact paths and key 
performance indicators (Chapter 2) for automated driving, lot of uncertainties still remain. In 
the following chapters, the potential impacts on the selected impact areas relevant to 
MANTRA are discussed in detail. It is important to keep in mind, that most of the impacts 
listed and discussed in the following sections are based on either simulations, expert 
analysis, or field tests of lower automation levels (i.e. driver assistance systems). The results 
presented below are based on carefully selected set of reviewed literature in the area. The 
authors, however, recognize the need to update this knowledge when real-word evaluations 
of higher automation levels become available. 

It must be noted that there are large uncertainties in the potential impacts of connected and 
automated driving, which does not depend on the technology only, rather on how the 
technology is adopted for various purposes. Especially, there is little understanding on 
whether these vehicles will be owned or leased by users following the current model, or 
whether automated mobility services will make ownership obsolete, as claimed in some non-
academic literature. As Wadud et al. (2016) suggest the share of ownership vs. mobility 
services in an automated future is possibly the largest uncertainty in impact modelling, as 
these affect nearly all of the impacts mentioned in this section.   

3.1 Value of travel time 

Travel time is traditionally counted as a ‘waste’ of time or cost to the traveller during the 
traveller decision-making process and in travel demand modelling. The wasted value of time 
(Value of Time) or the Value of Travel Time Saved has two important functions in transport 
modelling and appraisal. Firstly, the choice of modes depends on the relative costs of 
different modes, including this cost of wasted time; and secondly appraisal of transport 
project employs this number for benefit calculations given the reduction of travel time is often 
the aim of major transport projects.   

One of the biggest advantages of automated vehicles is the potential for relieving the driver 
of driving duties and using that time for other worthwhile uses. Any such beneficial use of 
time has substantial implications for our travel decisions and travel demand modelling 
through changes in the Value of Travel Time Saved. Citing the literature on multitasking, 
especially in public transport modes, several authors have suggested that the Value of Time 
or Value of Travel Time Saved will be smaller in an autonomous vehicle, compared to that for 
a driver in a manually driven vehicle (Lyons and Wardman 2017, Wadud et al. 2016). The 
numerical value of the Value of Travel Time Saved thus sits at the centre of the debate on 
the travel demand impacts of autonomous vehicles and the modelling of it.  

Time savings are typically one of the dominating factors in cost–benefit analyses of 
transport-related investments. In a longer term assessment perspective, with already some 
penetration of automated vehicles and the related time savings already reaped, one of the 
most important benefit drivers will likely diminish as the unit cost of an hour spent in traffic 
shall dramatically decrease (Geissler et. al, 2016).  

It is accepted that the Value of Travel Time Saved depends on the ability to engage in other 
activities during travelling, although a direct relationship with Value of Travel Time Saved and 
activities has not been established so far. In the context of automated vehicles, there are 
three – somewhat separate – strands of literature that deal with the travel time use issue. 
The first, followed by early researchers like Wadud et al. (2016), Brown et al. (2014) simply 
borrows Value of Travel Time Saved from other studies that might be assumed to mimic the 
behaviour in an automated car, such as the value of time of a car passenger. 
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The second, followed by early researchers such Kyriakidis et al. (2015), Schoettle and Sivak 
(2014), Cyganski et al. (2015), and Bansal and Kockelman (2017) investigate how people 
might spend their time in autonomous vehicles. These studies use questionnaire surveys 
asking the respondents about their intended activities. Recently, Wadud and Huda (2019) 
conducted a stated intention survey similar to previous studies, but substantiate their results 
by asking chauffeur-driven car users about their time use now, assuming the time use 
behaviour in chauffeur-driven cars mimic that in autonomous vehicles. The authors find a 
strong correlation between stated intention about activities to be done in automated vehicles 
and current activities done in chauffeur-driven cars. Wadud and Huda (2019) also correlates 
the perceived usefulness of travel time in autonomous vehicles to the activities that people 
may engage in.  

The third stream of literature estimates the Value of Travel Time Saved in autonomous 
vehicles directly, generally using choice experiments. Despite the importance of this 
parameter, there are only a few such studies, which are summarized in Table 1. Among 
these, Steck et al. (2018) estimated Value of Travel Time Saved for commute trips in 
Germany and find support in favour of a reduced Value of Travel Time Saved in automated 
vehicles. The authors find that the Value of Travel Time Saved in private automated vehicles 
is 31% and in exclusive-use on-demand, automated vehicles are 10% smaller than that in 
manually driven vehicles. Correia et al. (2019) also found similar results in the Netherlands – 
a 26% reduction of Value of Travel Time Saved for commute trips in an automated vehicle 
with an interior layout of a mobile workspace. They also found that a leisure-oriented design 
does not reduce the value of travel time. In Switzerland, Horl et al. (2018) Switzerland report 
a reduction of Value of Travel Time Saved of 31% for exclusive use on-demand automated 
vehicles, which is substantially larger than Steck et al. (2018). Although Steck et al. (2018) 
could not find any substantial differences between Value of Travel Time Saved in exclusive-
use and shared-use automated on-demand mobility services, Horl et al. (2018) indeed report 
a smaller reduction in the shared-use case, which is expected.  

A factor affecting the possibility of work or leisure activities in a highly automated vehicle is 
the proneness of vehicle occupants to motion sickness. For example, Wadud and Huda 
(2019) show that people prone to motion sickness engage in a different type of activities 
(more thinking and planning than working or studying), which may affect the value of time 
differently too. Patented measures for motion sickness in automated vehicles have already 
been developed (Sivak & Schoettle 2018). 

The Value of Travel Time Saved in the shared-use case is especially important for mode 
choice, since it has a role in the choice between owning an automated vehicle and using an 
automated on-demand mobility service, with knock on effects on travel demand. 
Interestingly, Gao et al. (2019) find that the Value of Travel Time Saved in automated ride 
hailing services is higher than the Value of Travel Time Saved in a manually driven private 
vehicle; this discrepancy is a result of lack of trust in automated vehicles, which was not 
separated in the study. In summary, although some of the numbers may vary between these 
studies from three different countries, the qualitative conclusion from all these studies is the 
same: the Value of Travel Time Saved in automated vehicles is substantially lower compared 
to that for the current car drivers. For mobility services the reduction should not be as large 
as for the privately owned vehicles (table 3).   

Table 3. Value of time in automated vehicles 

  Country  Trip type  value of time 

manual car  

value of time 

autonomous 

private  

value of time 

autonomous 

exclusive-use 

service  

value of time 

autonomous 

shared-use 

service  

Steck et al. 

(2018)  

Germany  Commute   €6.60  €4.59  €5.94  -  

Correia et al. 

(2019)  

Netherlands   Commute   €7.47  -  €5.50  -  
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Horl et al. 

(2018)  

Switzerland  -  CHF9.57  -  CHF6.63  CHF7.90  

Gao et al. 

(2019)  

USA  -  USD24.47     USD28.03    

3.2 Number of trips 

While there are a substantial number of studies that model the effects of vehicle automation 
on total travel demand, studies that focus on the number of trips are few. Like the Value of 
Travel Time above, the effects on the number of trips also depend on whether automated 
vehicles will be owned or used to provide mobility services and their relative share.  

Wadud et al. (2016) suggest that there are two types of effects on car trips in an owned-
automated vehicle future. Firstly, there could be new car trips from the elderly or the 
disabled, who are resigned to a reduced-mobility lifestyle now; this is supported by Harper et 
al. (2016) also. Truong et al. (2018) extend this to include the younger age group (under 
driving-license age) too. Secondly, there could be larger number of trips from existing car 
users due to the reduced Value of Travel Time Saved, or from a modal shift toward 
automated cars. Although a number of researchers focus on the modal shift and increased 
travel demand (e.g. Wadud et al. (2016), Harper et al. (2016), Milakis et al. (2017), Auld et al. 
(2018)), often do not provide separate estimates for trips and instead focus on Vehicle 
Mileage Travelled. Schoettle and Sivak (2015) analyse the time synchronization of 
households’ vehicle trips in the US and find that the vehicle ownership could go down by 
43%, with concomitant increase in the rise of empty trips to allow the same trips to take 
place. Some of the estimates for trips are presented in Table 2, which clearly show the 
potential to increase the car trips. However, none of these estimates are predictions or 
forecast, rather than the result of what-if scenarios, e.g. what if all the elderly started to travel 
as much as the middle-aged group, or what if the household trips can be made by a fewer 
number of cars. 

The net effects of on-demand mobility services, often termed as shared autonomous vehicles  
collectively, on the number of trips remain uncertain. Nearly every exclusive-use mobility 
service vehicle (similar to Uber or taxis) is certain to have empty trips between dropping off a 
passenger and picking up the next one. While this may increase (if the services are cheaper 
than the current total costs of ownership and use of private vehicles) or not (if the marginal 
cost nature of the mobility-services become dominant) the total passenger trips in 
autonomous mobility vehicles, it will almost certainly increase total vehicle trips due to the 
empty trips (and vehicle miles, Childress et al. 2015, Horl et al. 2016, ITF 2015). On the other 
hand, shared-use of mobility services, could reduce the number of total car trips since one 
vehicle trip can replace several car trips. Once again, estimates for the reduction in the 
number of trips are scarce.   

Given the assumptions in the underlying models and the uncertainty in the share between 
ownership and automated on-demand mobility services in the future, the potential effects of 
automation on the number of car trips have a large uncertainty, however automation would 
almost certainly increase the number of car trips if “ride-shared” on-demand mobility services 
are not realized on a mass scale in future (Table 4).   
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Table 4. Effect of vehicle automation on total trips 

  Country  Timeline  Trip type  Increase in 

number of 

trips  

Key assumptions  

Childress et al. 

(2015)  

Puget Sound, 

USA  

  Total person 

trips  

0%-4.9%  Different scenarios  

Wadud et al. 

(2016)  

USA    Total car trips  2%-10%  New trips by the elderly and 

the disabled  

Kroger et al. 

(2018)  

Germany  2035  Total car trips  2.2%-8.3%  Owned vehicle scenario  

Kroger et al. 

(2018)  

USA   2035  Total car trips  3.1%-7%    

Truong et al. 

(2018)  

Victoria, Australia   Total car trips  7.31%  New trips by elderly, young 

(follows Wadud et al. 2016) + 

mode switch  

 

3.3 Total kilometres travelled 

The distances that will be travelled as automation penetrates the vehicle fleet will depend 
naturally on the type of usage of these vehicles: public transport or private transport. It is 
argued that private automation will be associated with longer distances because with a lower 
value of travel time (Correia et al., 2019) the disutility of traveling will be lower for the same 
travel distance (Wadud et al., 2016).   

That change of utility on the short term may mean longer routes but also more time spent on 
congestion as passengers will not feel their time inside the vehicle (Correia et al., 2015; de 
Almeida Correia and van Arem, 2016; Milakis et al., 2016). On the longer term a lower 
disutility of traveling (i.e. possibility to utilize the time in transit) may mean a willingness to 
move farther away from work locations (typically in the city center) which will then lead to 
longer commute distance trips which will then be difficult to avoid once the spatial structure of 
urbanized regions is allowed to change (Correia et al., 2016; Wadud et al., 2016).   

Other researchers argue that there could be an inverse movement back to living in city 
centres as these become more attractive due to the reallocation of public space from parking 
to other more attractive uses such as wider sidewalks or parks (Hollestelle, 2017). What 
effect will dominate the other is still to be seen and again it depends on what technology will 
allow to do inside an AV as well as human preferences of traveling and living.  

Regarding public transport, the risk is more focused on the empty kilometres that may be 
generated by shared vehicle systems (Martinez et al., 2014). Results in the literature point for 
the need of fewer vehicles to satisfy the same demand once vehicles become level 4 or level 
5 and start to be incorporated in taxi and Uber-like systems (Fagnant et al., 2015; 
International Transport Forum, 2015), however the other side of the coin is the need to 
relocate such vehicles as they move to pick-up clients in other parts of the network (Jorge et 
al., 2014; Martínez et al., 2017). Current Uber systems are already creating more traffic 
congestion due to the added empty kilometres but also to the added demand of people who 
used to use public transport and who find it much more comfortable now to just request for a 
ride (Growth et al., 2017; Schaller, 2018). Arbib and Seba (2017) suggest that Vehicle 
Mileage Travelled (VMT) in the USA could increase by 50% as a result of automated mobility 
services.   
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3.4 Share of car & public transport  

Mode choice depends on many factors including trip distance and travel time, trip motive, 
available transport alternatives and travel costs. It is complex to assess mode choice before 
new alternatives are introduced into the market, which is the case with automated vehicles. 
Many times what researchers have available are stated preference surveys whereby people 
state what they would do if they were before a certain situation. Several of these experiments 
have been done in recent years and they help understand the impact of connected and 
automated vehicles on the shares of car and public transport demand (Correia et al., 2019; 
Yap et al., 2015, 2016).  

Vehicle automation may come in essentially two forms: private cars or public transport 
systems. Researchers and practitioners have been discussing the pros and cons of both 
uses of vehicle automation and certainly the future can be a mix of both uses. Regarding the 
latter there are already many pilot systems under operation in Europe and the United States 
with pod like buses (Alessandrini, 2017; Alessandrini et al., 2015). In the Netherlands a level 
4 system running in its own segregate path, the Parkshuttle bus connection, has been in 
operation for two decades now.   

In public transport usage of vehicle automation it is foreseen that with the cheaper operation 
costs (no drivers needed) and flexibility to operate the system (vehicles can be sent 
anywhere at any time to other areas of operation) it will be possible to offer a better quality of 
service to the population (Winter et al., 2018, 2016). This can be done with smaller vehicles 
(cars in car sharing systems) (Liang et al., 2018) or buses (in a more traditional public 
transport approach). These systems are expected to be used essentially in urbanized 
regions and one of the most useful usages will be as last/first mile transport. For long 
distance intercity transport, still high capacity public transport systems such as rail continue 
to be seen as the best option to transport many people in the most sustainable way. The role 
of robotaxis in connecting different cities thus using the motorway network is difficult to 
assess, as this will represent a management challenge: moving vehicles from one city to 
another may represent great vehicle stock imbalance, which will lead to a high price to be 
paid by the passengers. These robotaxis can be driven in any optimal way desired by their 
operators but there could also be the case of, if imposed by law, a specific behaviour being 
imposed by public authorities for a certain part of the network.  

Increased uptake of automated vehicle sharing and ride sharing models, may reduce total 
vehicle ownership. MaaS is likely to play a key role in encouraging the shared ownership 
model of automated vehicles (Johnson & Rowland 2018). This is promoted by the lower price 
of shared mobility for the user. Buckley (2018) estimates that vehicle cost per mile or km will 
be less than half the current prices of ride-hailing services such as Uber and Lyft. Although 
Bosch et al. (2018) are not as optimistic for Switzerland, Wadud (2017) also suggest 
substantial reduction in the costs of providing mobility services on a life cycle basis. On the 
basis of costs of ownership and use, including the costs of time, Wadud and Mattiolli (2019) 
suggest that between 33% to 45% of current vehicle users will find automated mobility 
services to be the cheaper option in future, while the rest will find ownership to be more 
affordable. 

A study for the Boston area (WEF 2018) predicts a clear shift to mobility-on-demand for both 
automated and traditional vehicles, which will account for nearly 30% of all trips in the 
Greater Boston area and 40% of trips within city limits in the future. Driving this shift are the 
cost-competitive nature of robo-taxis and robo-shuttles – especially on shorter trips – and the 
added convenience and comfort compared with mass transit. In suburban and other areas 
outside the city proper, that mobility-on-demand will mainly replace personal-car usage. In 
urban areas, it will replace the use of both personal cars and mass transit, to equal degrees. 
Shared automated vehicles will reduce the number of vehicles on the streets by 15% while 
the total number of miles travelled will increase by 16% (WEF 2018). 

An increase in private vehicle modal share is also possible, as the option of travelling in an 
automated private vehicle becomes more attractive than using alternative public transport or 
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walking/cycling options (Cavoli et al., 2017, Johnson & Rowland 2018). Automated vehicles 
even when shared can compete with public transport and active transport modes (walking 
and bicycling) leading to better individual mobility but less transport system efficiency (UITP 
2017). 

Private cars in the future may at some point in time be fully automated everywhere and in all 
conditions i.e. without any ODD limitations ( = level 5 automation) and in that case, we are 
talking about vehicles that can become almost like private living rooms where people would 
be able to have leisure time or even work. This can shift demand toward private cars, if 
prices are competitive, with the difference that with an improved experience people are 
willing to stay longer in their vehicles which can add to the traffic congestion as an occupant 
does not have an incentive to change his/her behaviour. The driving behaviour of the vehicle 
can be controlled in terms of route and lower level control (trajectory) which can be beneficial 
to the road operators; however, it is not clear what type of control will be possible to 
centralize or to give to the vehicle itself. In a very futuristic scenario with only automated 
vehicles, the control over those vehicles could be perfectly centralized to achieve what is 
called the system optimal equilibrium whereby travel time/costs are minimized.  

In summary, it is impossible to estimate yet the demand that both modes (private or public) 
will have. The demand is depending greatly on what the technology will allow the occupants 
to do in a car, the price of the vehicles, shared mobility market take-up (Nieuwenhuijsen et 
al., 2018) and whatever policies authorities will implement in the future to achieve desired 
outcome on the mobility system locally and on a national level (Milakis et al., 2016). 

3.5 Travelling on peak hour (timing) 

It is expected that autonomous cars increase the road capacity, possibly resulting in a higher 
traffic demand during peak hour without increase of travel time. On the other hand, it is 
expected that (work-related) activities performed during a trip in an autonomous vehicle 
might result in a better spread of peak travels (i.e., leaving at a different moment in time while 
working the same number of hours), and thereby reducing the number of trips performed 
during peak hour. 

Nearly 50% of drivers intend to perform work-related activities such as phoning or mailing 
while driving a fully automated vehicle according to a large survey by Kyriakidis (2015). 
Contrary, a survey on the public opinion about self-driving vehicles by Schoettle (2014) 
showed that only 4.9% of the respondents would perform work-related activities during 
driving. Overall, it may be hard to imagine this situation when asked in the surveys, and 
additionally, the survey sample representativeness explains a lot in this case; in Kyriakidis 
study 5000 respondends were from 109 different countries, and is is hence expected that the 
sample wasn’t representative in any of those countries. 

However, it is difficult to check whether the intention of drivers is identical to their actual 
behaviour due to the non-existence of autonomous vehicle on the highways. One might say 
that activities performed during a train trip are an indicator for activities that will be performed 
in an autonomous private vehicle. Therefore, Cyganski (2015) also asked for activities 
currently performed during train trips. Figure 8 shows that working while traveling by train 
only plays a minor role. This is explained by stating that both people do not want to spend 
their time working while traveling, but also that are various jobs, which cannot be executed 
while en route. In the same questionnaire, a question on benefits of automated vehicles was 
asked, showing that people merely want to perform leisure activities. 30% of the respondents 
indicated that they would (sometimes) perform work-related activities, identical to the 
activities performed in the train.   
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Figure 3. Usual time use when traveling by car (N=824) and train (N=1.000) (Cyganski, 2015)  

 

Another comparison with a current existing travel mode was made by Wadud and Huda 
(2019): he showed that there exists a high correlation with intended activities in fully 
automated vehicles and current performed activities in chauffeur-driven cars. He also 
showed different behaviour for both the outbound (e.g., morning peak) and inbound (e.g., 
evening peak) travels. Whereas working is the most popular activities on the first, people like 
to relax during their return trip.   

It can be concluded that the number of trips during peak hour will not decrease remarkably 
after the first introduction of the autonomous car. Some people will perform work-related 
activities, probably to start later or be home earlier. However, most will just use the time to 
‘switch off’ and relax. Only the effect of increased capacity might result in a busier peak 
period in terms of number of vehicles, but this aspect remains unclear and will not appear 
with low penetration rates. 

3.6 Travelling reliability 

Travel reliability here is seen from a broader perspective since most often the term is 
associated to travel time reliability. This is for sure a very important component of reliability 
but not the only one. Reliability is considered to be associated with certainty in being able to 
do a trip at the expected travel time. Thus, it surely includes the travel time but also the 
existence or not of a certain transport system to serve transport needs.   

Automated vehicles, if used as public transport, will bring the advantage that they will be able 
to react fast and act in a demand-responsive public transport systems reaching virtually any 
point of a city or country. This flexibility may increase the response of the transport system, 
therefore, providing a more reliable service to the clients (Winter et al., 2018b). When 
operating in scheduled based systems the difference to today’s public transport service 
should not be very significant in that respect since today’s transit services are quite optimized 
and the drivers can catch up very fast to maintain a proper schedule.  

When looking at a generalized use of automated vehicles in the future (public and private) 
and the driving of such cars on the road, there will be an effect on the reliability of the travel 
times on the network as a result of the proven stability that they will have, especially if these 
vehicles are connected (Wang et al., 2017). That stability is essential to decrease the 
variance of travel times on the road, therefore, increasing their predictability. Not to be 
confused with travel time since this depends on traffic congestion and therefore on the total 
demand that will exist in the future. “Drivers care not only about the amount and value of time 



CEDR Call 2017: Automation 

 

Page 29 of 63 

per trip, but also the value of reliability, that is how likely is it that a trip of uncertain travel 
time can be completed within some expected time costs of congestion” (Rubin, 2016).  

One of the causes for travel time instability and variability are for sure the incidents and 
accidents that happen on the network (Kwon et al., 2011; Tu et al., 2008). Departing from a 
point where these incidents and accidents will decrease as a result of a lower probability of 
human error then we can expect that the reliability would be increasing in the future. If on the 
other hand, possibly only during a transition period, there are failures of the AVs under some 
conditions, for example extreme weather, there could be the case where the reliability would 
decrease during some time before it could increase taking advantage of the full capabilities 
of the CAVs. 

3.7 Travelling comfort 

Journey or travel comfort relates to a number of underlying factors, mental, emotional and 
physical. High mental and emotional comfort engenders a sense of mental well-being and 
thus is related to the desire to minimise uncertainty and stress. In the context of automated 
driving, such stress and anxiety can be linked to trust in system operation (Carsten and 
Martens, 2019). A contribution of road authorities to such comfort is related to the provision 
of high quality journeys on the network, free from incidents and with assured journey times. 
When environmental condition deteriorate or are about to deteriorate, then good prediction of 
future conditions and high-quality services in terms of e.g. ice-prevention, snow removal and 
incident management would help to mitigate journey stress. Here users of automated 
vehicles will benefit from road operations in the same way as users of conventional vehicles, 
but users of AVs may have higher expectations than conventional drivers, particularly if they 
are paying for services. There is a clear role for connectivity here, in terms of providing high 
quality information and hence reassurance to users of AVs. 

Another aspect of comfort relates to physical well-being. One factor in many studies of travel 
mode choice is seat comfort (see e.g. Hagen and Bron, 2014). There is no reason to believe 
that automation would have a major effect on this aspect of comfort, although by freeing the 
driver from the necessity of being coupled to the vehicle controls, an ADS may somewhat 
reduce limb and back strain. On the other hand, there is every reason to believe that 
automation might affect another aspect of comfort (or rather discomfort), namely the potential 
for motion sickness. Passengers in a vehicle are more liable than a driver to experience 
motion sickness (Rolnick and Lubow, 1991), and engagement in screen-related tasks or in 
reading while being driven exacerbates motions sickness (Turner, 2010). 

Motion sickness is related to the degree of horizontal and lateral acceleration of the vehicle 
(Turner and Griffin, 1999) and hence to vehicle speed and vehicle aggression in 
manoeuvring. Motion sickness can also pose a threat to the performance of the user when 
requested to take back vehicle control. Diels and Bos (2016) report that this does not 
necessarily have to refer to the extreme of a user vomiting at the time of a request or an 
emergency situation, but also to more subtle effects such as reduced situation awareness 
and increased response times. 

Smooth driving will reduce the incidence motion sickness, and the designers of ADS can be 
expected to be aware of this linkage. One can anticipate, therefore, that AVs will tend to drive 
at longer following distances so as to permit less rapid deceleration when the preceding 
vehicles slow down, to negotiate sharp curves at lower speeds and to be less prone to 
undertake rapid manoeuvres such as abrupt lane changes. Such smoother driving may 
reduce incidents, but there might also be an impact in the reduction of capacity. 
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3.8 Accessibility 

Automation can affect accessibility by altering its all four components (Geurs and van Wee 
2004) – land use, transportation, temporal and individual – in different ways. Firstly, by 
reducing the wasted value of travel time, automation reduces the total costs of travelling by 
private cars, affecting the transportation component. As such, people could accepts jobs, 
shopping, leisure or residential locations farther from they are used to now. These have 
direct implications on land use in the long term. Automation could increase urban sprawl or 
even exurbanisation toward rural areas, subject to land use regulations – affecting the land 
use (Milakis et al. 2017). Increased demand, however, could increase congestion and thus 
have an adverse effect in accessibility, too.   

Secondly, fully automated vehicles could perform some activities on their own, e.g. picking 
up shopping, or dropping off children at school. This allows overcoming the temporal and 
individual constraints (e.g. shop closing hours, competition between job and children’s 
activities) to improve accessibility (Milakis et al. 2017).   

Thirdly, on-demand mobility services are expected to become substantially cheaper in a 
driverless environment than they are now. As such, car-based mobility services are expected 
to become more affordable to users who cannot afford a car now. This also has large 
implications for access to job or leisure opportunities that would otherwise have been difficult 
to avail without owning a car. Automated dynamic ridesharing could also serve low-density 
regions where public transport like buses are not viable, further improving the accessibility. A 
shift to shared mobility could also increase urban density by removing the need for the 
parking infrastructure and have further land-use implications (Bagloee et al. 2016).   

The limited modelling studies so far show substantial improvements in accessibility, the 
definition of which could vary between studies. The effects on accessibility could also be 
different depending on geography, current transport offering and socio-economic 
characteristics. Childress et al. (2015) report an increase in accessibility resulting from an 
owned automated vehicle future, in the Puget Sound region in the US. Kim et al. (2015) 
report a 50% increase in accessibility for the entire Atlanta region. Childress et al. (2015) 
report that accessibility was improved the most in low density urban and remote, rural areas. 
Meyer et al. (2017) also report an improvement in accessibility in their three scenarios of 
automation, with well-connected exurban and rural municipalities in Switzerland benefitting 
the most. These results therefore agree that low-density areas are likely to enjoy the largest 
improvement in accessibility. All of the accessibility benefits in these modelling exercises 
result from improving network capacities due to automation; as such, V2X connectivity is vital 
toward realizing these accessibility benefits.    

Childress et al. (2015) and Meyer et al (2017) also include demand increases and still report 
improvements in accessibility, especially, as long as it does not adversely affect the network 
performance. Through expert elicitation, Milakis et al. (2018) highlights the uncertainties and 
elicit three viewpoints: a) accessibility impacts are uncertain due to induced demand 
nullifying reduced transport costs; b) accessibility will change due to two opposing changes 
in land use (densification of centres and suburbanization); and c) only a segment of the 
society could enjoy the benefits of automated vehicles, with significant social equity 
concerns.   
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4 Impacts of connected and automated driving on 
Driver Behaviour & Traffic flow 

4.1 Driving speed & speed variability 

In automated vehicles, the longitudinal driving behaviour is mainly determined by the ACC or 
CACC systems. Different manufacturers are developing such systems nowadays, each with 
its unique specifications (such as the operational design domain and time-headways). 
Different studies have reached contradicting conclusions regarding the impact of ACC on 
driving speeds, but rather consistent conclusions with respect to the speed variation. Some 
of these studies used field operational tests (FOT) (Kessler et al., 2012; Viti, Hoogendoorn, 
Alkim, & Bootsma, 2008), while others used driving simulators (Hoedemaeker & Brookhuis, 
1998; Piccinini, Rodrigues, Leitão, & Simões, 2014), and simulation (Aria, Olstam, & 
Schwietering, 2016). These impacts were investigated at the individual vehicle level, as well 
as, at the network level. In the EuroFOT study (Kessler et al., 2012) the Adaptive Cruise 
Control (ACC) was evaluated in a bundle with the Forward Collision Warning (FCW). Data 
from passenger cars as well as trucks was gathered for a period of 6 months (three months 
of baseline and three months of treatment). Figure 4 summarizes the findings regarding the 
average speeds per road type for passenger cars and trucks separately:   

  

 

Figure 4. Average speeds per road type within treatment period for passenger cars (top) and 
trucks (bottom), (Kessler et al., 2012).  
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As shown in Figure 4 there is a significant increase in the average driving speeds on 
motorways when using the ACC in combination with FCW systems. A follow up simulation 
study found that the effect on network speed is similar in size to the effect found in the FOT 
and has a linear trend with higher penetration levels. The simulations were based on the 
driving behaviour and system usage observed in the FOT. The effect scales linear with the 
penetration of equipped vehicles in most situations.   

Driving simulator studies (Piccinini et al., 2014; Stanton, Young, & McCaulder, 1997) found 
that the usage of ACC by both ACC users and regular drivers did not affect the driving 
speeds significantly compared to manual driving condition, contradicting the findings by other 
studies who used also the driving simulator (Hoedemaeker & Brookhuis, 1998).   

Aria et al. (2016) used VISSIM to investigate two extreme scenarios, 100% conventional 
vehicles case versus 100% automated vehicles on a segment of an autobahn with 
discontinuities (on-ramps, off-ramps, and weaving sections). For that purpose, they have 
adjusted the driver behaviour parameters in the car following and lane changing model. The 
researchers found that the average travel speed on the autobahn segment in the p.m. peak 
enhanced from 82.42 km/h in the conventional vehicles scenario to 89.41 km/h in the 
automated vehicles scenario, which shows 8.48% growth in the average speed in peak hour. 
The results of standard deviation of speed determine that automated vehicle drive between 
the predefined ranges of speed, which show a less dispersion around the mean speed in 
accordance with the findings of previous studies (Viti et al., 2008).   

4.2 Time headway 

In automated vehicles, the time-headway is based on the ACC or CACC settings, which are 
never lower than the legally prescribed value. Therefore, it is expected that the time-
headways will be larger than those adopted by human drivers who often drive with time-
headways lower than the legal prescribed value. This has indeed been shown in the 
EuroFOT study (Kessler et al., 2012). An increase in the average time-headway of about 
16% on motorways was found when using the ACC. Similar results were found in a 
naturalistic driving study with ACC-equipped vehicles in different traffic states on motorways. 
With ACC On, average spacing and headways were larger, whereas standard deviations 
were smaller (Schakel, Gorter, de Winter, & van Arem, 2017). Larger headways are 
expected to reduce traffic flow capacity, while the reduction in fluctuation of the headway, 
can reduce events of breakdown, which are inevitable with human driving, and eventually 
lead to an increase in capacity.     

On the other hand, automation in combination with Vehicle-to-Vehicle (V2V) communication 
offers the possibility of platooning with shorter time headways between vehicles, which can 
increase the traffic capacity of lanes and thus traffic efficiency (Ntousakis, Nikolos, & 
Papageorgiou, 2015). Drivers’ choices of following distances when driving a vehicle 
equipped with Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control 
(CACC) depends on their level of comfort and acceptance (Nowakowski et al., 2011). It is 
expected that the CACC will give drivers an enhanced feeling of comfort compared to the 
ACC. The objective measurements in the study by Nowakowski et al. (2011) show that 
drivers of the CACC system selected vehicle-following gaps that were approximately half the 
length of the gaps they selected when driving the ACC system as presented in Figure 5.  
Furthermore, gender differences can be observed.   



CEDR Call 2017: Automation 

 

Page 33 of 63 

 

Figure 5. Overall Mean Time-Gap Settings (source: Nowakowski et al. (2011)).  

 

Several driving simulator studies in the literature have found that when drivers of unequipped 
vehicles drive next to platoon of AVs, they tend to adapt their time headways and imitate the 
short time headways that AVs keep when driving in a platoon (Gouy, 2013; Gouy, 
Wiedemann, Stevens, Brunett, & Reed, 2014, (Yang, Farah, Schoenmakers, & Alkim, 2019). 
Drivers of unequipped vehicles drive with shorter time headways when driving next to 
equipped vehicles in a platoon maintaining shorter time headways, and sometimes these 
drivers spend more time under their ‘critical’ time headway threshold of 1.0 second.   

Skottke, Debus, Wang, and Huestegge (2014) focused on the carryover effects of highly 
automated convoy driving on subsequent manual driving performance and compared their 
behaviour to a control group who performed only manual driving. The authors conducted a 
pre–post simulator design to measure the time headway and the standard deviation of the 
lateral position. They found that the time headway was reduced after leaving the automation 
mode, which is likely due to sensory and/or cognitive adaptation processes.  

4.3 Capacity 

Capacity of a road is highly related to the time headway. As shown in Section 4.2, users of 
ACC tend to keep a larger headway than manually driven vehicles. In accordance to this 
finding, Bierstedt et al. (FP Think Working Group, 2014) concluded that non-connected 
autonomous vehicles would indeed degrade highway capacity due to the safety-conscious 
programming of ACC equipped vehicles. Their simulation suggests that capacity benefits will 
only occur if 75% of the fleet mix consists of autonomous vehicles – leading to traffic flow 
benefits of 25-35%. Friedrich’s (2016) findings are identical: capacity drops due to a larger 
time headway of ACC vehicles compared to manually driven. Although commonly a human 
reaction time of 1.8 seconds is assumed, empirical studies showed that headways of 
manually driven vehicles on highways are significantly shorter, especially at high traffic 
volumes (Wagner, 2014).   

On the other hand, connectivity brings a lot of benefit. Headways decrease, resulting in an 
increase in capacity on highways. Shladover (2013) studied the impact of connected vehicles 
for different market penetration rates using microsimulation. The lane section had a speed 
limit of 105 km/h and a capacity of 2020 vehicles/hour without considering automated 
vehicles. They used time gaps as chosen by drivers during a field test with automated 
vehicles. An increasing market penetration of CACC leads to an increased road capacity – 
up to 3970 vehicles/hour/lane for a 100% CACC scenario. Combined with ACC vehicles, 
these only results in slight additional increases in capacity as can be seen in Figure 6.   
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Figure 6. Prediction of highway lane capacity (vehicles/hour) of ACC and CACC equipped 
vehicles using time gaps chosen by drivers in field test (Shladover, Su, & Lu, 2013)  

 

If not only considering straight road sections, but also ramps and weaving sections, the 
introduction of connected automated driving might result in a decrease in capacity with small 
penetration rates (Rämä & Kuisma, 2018). This is due to the discontinuities where lane 
changes take place. Although homogeneous speeds of drivers result in fewer shockwaves, 
this results in a higher difficulty of performing lane changes. This might cause vehicles being 
stuck at merging sections, not able to get to the lane where they want to be. Only at higher 
penetration rates, communication between vehicles result in suitable gaps and an increased 
road capacity.  

Atkins (2016) performed several microsimulation scenarios for testing the impact of 
autonomous vehicles on delays and congestion in a scenario including on-ramps, off-ramps 
and weaving sections. He applied several combinations of capability levels: L1 (no 
automation), L2 (driver remains in control, but vehicles have better throttle control and 
smoother acceleration behaviour), L3 (vehicle controls longitudinal and lateral behavior as 
defined by the user, e.g. assertive or cautious behaviour), and L4 (fully automated where the 
driver has not input and is not necessary). With a penetration rate of 25% autonomous 
vehicles (20% L2, 5% L3), this resulted in a slight increase in average delay. However, at a 
100% scenario (40% L2, 20% L3, 20% L4), a decrease of delay of almost 35% was obtained. 
Davis (2004) is a bit more optimistic. At a level of 10% ACC vehicles, jams occurred in his 
simulation model, which consists of a single lane with an on-ramp. At 20%, all congestion 
was suppressed.   

Another study on ACCs with a 25% penetration rate by Kesting et al. (2008) showed that a 
temporary reduction of the time gap setting to 0.75 seconds around an on-ramp bottleneck is 
able to fill the capacity gap and significantly reduce congestion compared to a 1.5-second 
headway.   

Simulations including V2V communication were performed by Rios-Torres (2017). They 
assessed the impact of optimal coordination of CAVs by testing a 0% and 100% CAV 
scenario. They showed that the total travel time for low traffic flows remains the same – only 
a bit shorter in the 0% CAVs scenario due to neglecting of speed limits. However, for larger 
traffic flows the travel time rapidly increases for the baseline scenario. CAVs can contribute 
significantly to the wide variations in traffic flow and densities leading to congestion and 
unstable traffic, as can be seen in Figure 7. 
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Figure 7. Time-flow and flow-density graphs for a 0% and 100% CAV penetration rate (Rios-
Torres & Malikopoulos, 2017)  

 
Makridis et al. (2018) showed that autonomous vehicles result in an increase of congestion 
due to the inability to predict movements of neighbouring vehicles during lane 
changes. However, connected autonomous vehicles outperform manual driven vehicles with 
high penetration rates. Especially during high demand, large decreases in congestion can be 
observed – identical to the finding of Rios-Torres (2017). With a low penetration rate, there’s 
no vehicle to communicate with, falling back to a non-connected behaviour.  

If connected and automated vehicles could utilize narrower lanes, this has potential to 
increase capacity, but only if all the vehicles are connected and automated. In this 
hypothetical 100% penetration rate scenario, the current 3+3 lane roads could be deployed 
to 4+4 lane roads, increasing the capacity accordingly. However, this is currently just a 
theoretical estimation, and would require all the vehicles on the road to be connected and 
automated.  

4.4 Traffic stability 

In the previous paragraph it was concluded that ACC equipped vehicles generally cause 
additional congestion, whereas CACC reduces the congestion. Likewise, ACC results in less 
stable traffic, CACC in more stable traffic.   

Marsden (2001) performed microsimulation experiments with different ACC penetration rates 
(0 to 70%). The experiments showed that on a 3 km straight lane stretch, the average 
journey time increased by increasing number of vehicles equipped with ACC with a gap 
headway value of 1.5 seconds. Even with a 1.2 seconds gap, average travel times increased 
– albeit less. By extensively observing the simulation results, they concluded that most ACC 
equipped vehicles tend to drive on the 3rd lane, due to slow-driving HGV’s on the 1st lane 
and a higher amount of lane changing vehicles on the 2nd lane. However, they noticed that 
the gap between ACC equipped vehicles forming platoons in lane 3 is large enough for 
vehicles from lane 2 to cut-in. As a result, the time gap becomes too small to handle by the 
ACC vehicles, and a manual takeover is required. The sharp deceleration to resume the 
driver’s desired time gap results in a shockwave further downstream, with increasing 
congestion and decreasing stability. This simulation shows that the behaviour of automated 
vehicles in “emergency situations” (i.e., vehicles merging resulting in too small headways) 
highly influences the throughput of traffic. However, it is unsure whether drivers will turn on 
ACC after such an event, but probably not. This implies that ACC will have no impact on 
stability, since the systems will not be used in critical situations.  
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Stanek (2018) also performed microsimulation experiments for non-connected autonomous 
vehicles. However, these vehicles did not require manual take-overs at too low headway 
values. The default headway time gap of 0.9 seconds for manual driven cars (Wiedemann 99 
Car Following model) was changed to 0.25. Likewise, this resulted in a decrease in total 
delay and increase in average speed with increasing penetration rates.   

Milanes & Shladover (2014) implemented several intelligent driver models (IDM) on 
production vehicles. Their results indicate that consecutive strings of ACC vehicles are 
unstable, amplifying speed variations of preceding vehicles. On the other hand, CACC 
vehicles overcome these limitations, providing smooth and stable traffic. 

4.5 Travel time 

It is expected that with the introduction of connected and automated vehicles, travel times 
would reduce. This is because of the possibility of reduced time headway and the 
communication between vehicles, which increases traffic stability, and reduces shockwaves. 
This however, requires 100% penetration for the connected and automated vehicles without 
having the conventional vehicles in the same road or on a dedicated lane. For example, Aria 
et al. (2016) found that there is a reduction of about 9% in the average travel time in the 
scenario with 100% automated vehicles in comparison to the scenario with the 100% of 
conventional vehicles in the p.m. peak. Rios-Torres and Malikopoulos (2017) developed a 
microscopic simulation framework to explore the CAVs impact on travel time reduction in 
merging roadways. The authors found that 100% CAV penetration rate allowed for a 
significant reduction in travel time (up to 60%) in moderate and high traffic congestion 
situations. Talebpour, Mahmassani, and Elfar (2017) investigated the impact of dedicated 
lanes on travel time reliability. Three dedicated lanes strategies were evaluated: (a) 
mandatory use of the dedicated lane by highly automated vehicles, (b) optional use of the 
dedicated lane by highly automated vehicles; and (c) limiting highly automated vehicles to 
operate autonomously in the dedicated lane. The results revealed that the optional use of the 
dedicated lane by highly automated vehicles had positive effects in terms of travel time 
reliability. 

 



CEDR Call 2017: Automation 

 

Page 37 of 63 

5 Impacts of CAD on Traffic Safety 

5.1 KPIs for Safety 

As listed in chapter 2.3, the following key performance indicators were rated as most 
important ones in an international expert survey conducted by Trilateral impact assessment 
sub-group and reported by Innamaa & Kuisma (2018): 

 

• Number of crashes (distinguishing property damage, and crashes with injuries and 
fatalities) in total and per 100 million km; 

• Numbers of conflicts encountered where time-to-collision (TTC) is less than a pre-
determined threshold /100 million km; 

• Number of instances with hard braking (high deceleration) /1000 km. 

 

The KPI work was continued in the CARTRE project. CARTRE (Rämä and Kuisma, 2018) 
selected fatalities and injuries as KPIs for further analyzing the safety impacts of automated 
driving. 

5.2 Theoretical background for safety impacts 

Overall, three aspects have been used to explain the traffic safety outcome (Nilsson, 2004; 
Elvik et. al. 2009): 

- Exposure, 

- Crash risk, and  

- Consequence in a crash.  

Out of the earlier (Chapter 2.2.) listed 9 impact mechanisms 5 first ones are related to crash 
risk (Kulmala, 2010). The following assumptions concerns these mechanisms: 

Safety is assumed to increase when: 

- speed decreases (power model), Nilsson (2004) 

- standard deviation of speed decreases, 

- speed violations decrease, 

- number of jerks (sudden changes in longitudinal or lateral acceleration) decreases, 

- very close following decreases, 

- lateral position is more stable. 
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Additionally, the following are assumed to increase safety, too: 

- signals are used correctly, 

- vulnerable road users are given consideration, 

- driver state is not deteriorated, 

- focus of driver attention is allocated correctly. 
 

Mechanisms 6 to 8 are related to exposure. Time spent on road has linear relationship with 
safety: when mileage increases, traffic safety decreases. In addition, the mode choice has 
impact on safety, since e.g. public transport is safer that driving or travelling in a passenger 
car. Moreover, the timing of the journey affects the safety, too. Peak-hour and nighttime 
driving are more dangerous than driving at other times. Different road types have also 
different crash risks: motorways are safer than two-lane rural roads etc. (Elvik et. al., 2009). 

Kulmala’s (2010) last mechanism 9 is related to the accident consequences. Overall, the 
consequences of the accidents are more severe when speed increases. Additionally, there is 
a relationship between the safety of a vehicle occupant, and the type of the vehicle as well as 
passive safety systems of the vehicle.  

5.3 Earlier studies on safety impacts 

5.3.1 CARTRE - a scenario based impact assessment 

CARTRE (Rämä et. al., 2018) used scenario-based assessment for the impacts of 
automated driving. The scenarios used in the assessment were the following: 

- short-term scenario 

- long-term scenario, in which automation emerges parallel to shared mobility and the 
fleets are market operated 

- long-term scenario 2, in which shared automated transport is authority driven 

- long-term scenario 3, in which automated vehicles are mainly privately owned, and 
the shared mobility has not succeeded. 

The evaluation work was done by three groups of experts. The experts evaluated impacts 
based on their background and expertise. They were asked to share their insight on the 
direction of change (increase/no change/decrease) and magnitude of change on a scale 1 - 
5, where 1 = small change and 5 = large change. In addition, the certainty/uncertainty of the 
estimates was provided. 

Three impact areas (driver behavior, energy and environment and network efficiency) were 
first analyzed for a single AD function. The following functions were included (Rämä et. al., 
2018): 

1. Highway autopilot including highway convoy 

2. Urban & suburban pilot 
3. Automated valet parking 

4. Privately operated, automated personal rapid transit (PRT)/shuttles in mixed traffic 
5. Publicly operated, automated buses and trams in mixed traffic. 
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It is important to notice, that in CARTRE, the ODD did not cover rural (two-lane) roads. This 
has huge impact on the potential effects, as very well demonstrated by Rösener et. al. (2018) 
(Figure 8). Even in Germany with an extensive motorway network, only 6% of the accidents 
take place on a motorway. Out of them, 47% happen in the situations, where L3 automation 
could help in preventing the crash. From this, one can calculate that the safety potential of L3 
motorway chauffeur is up to 3% of all accidents in Germany. 

 

 

Figure 8. A German example of potential safety impacts of motorway chauffeur. (Rösener et. 
al., 2018) 

 
In CARTRE (Rämä et. al., 2018) safety and public health impacts were grouped together. 
(Table 5). 

Table 5. Estimated public health and safety impacts for the society by Rämä et. al. (2018). 
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To summarize (Table 5), total mileage travelled by active modes was not estimated to 
increase in any of the scenarios. In scenario 4 the comfort of automation and private 
ownership of automated vehicles would lead to a considerable reduction in use of active 
modes. The most positive impacts were assumed in scenario 3, where also the greatest 
decrease was estimated in the number of injuries and fatalities, due to automation. Thereby, 
the results highlighted the role of road authorities in maximizing the benefits of automated 
driving in road transport. 

5.3.2 Safer roads with automated vehicles 

OECD’s International Transport Forum (2018) reports the conclusions of the workshop 
“Safety and Security on the Road to Automated Transport: The Good, the Uncertain and the 
Necessary”, held in November 2017 in Paris. (OECD/ITF, 2018). 

The report (OECD/ITF, 2018) introduces the Safe System approach for automated road 
transport, meaning that the traffic system should be designed in such a way that human 
fallibility does not result in death or serious injury. The safe system approach starts with the 
insight that human error should no longer be seen as the primary cause for the crashes. 
Crashes are seen as a consequence of many actors, and the transport system should be 
forgiving to human errors. The often-mentioned 90% reduction of crashes due to automation 
(removing human error) is criticized, and especially L3 (and L4) automation including the 
need for the driver to take over the control of the vehicle is considered as potential risk. In 
addition, the issue of shared responsibility is introduced as potential risk: shared 
responsibility between human and automation often makes decision making more complex. 
In addition, human error is not removed from the traffic system as long as there are humans 
in the system (pedestrians, cyclists, drivers of conventional vehicles). (OECD/ITF, 2018). 

OECD/ITF (2018) also highlight that both the automated vehicles and the transport system 
needs to be safe. The minimum requirement should be that the transport system as at least 
as safe as today. Ideally, the system level safety should be improved with the introduction 
and deployment of automated vehicles. Automation has potential in removing such issues as 
impaired driving due to intoxication, fatigue, or just simply not concentrating on driving, but 
having secondary, non-driving related in-vehicle tasks, such as texting.  

How much automation then will improve road safety depends on how safely automated 
driving functions can carry out the parts of the driving task they are designed for. Aiming for 
perfection in automated driving systems is important, but a Safe System should remain the 
fallback solution. A system built to safely absorb human error is also tolerant to machine 
errors (OECD/ITF, 2018). 

One remaining question is why to automate human functions. According to Wickens et. al. 
(2003) and OECD/ITF (2018) there are the following potential motivations: 

- When it is dangerous for humans to carry out a task (intoxication, fatigue…) 

- When it is impossible for humans to carry out a task (e.g. accurate night-time 

sensing) 

- When carrying out a task is difficult for humans (e.g. something needing very fast 

reaction times) 

- Just for the sake of automation. 

The current deployment of automated driving functions is motivated by all these different 
measures according to OECD/ITF (2018). The comparison of human and hw/sw 
performance in various aspects is summarized in table 6. 
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Table 6. Comparison of Human performance to AD performance according to OECD/ITF (2018) 
and Schoettle (2017). 

 

 

Safety considerations in automation levels L2-L4 have the core in the safe handover from 
automated systems to the human driver when the system cannot interpret its environment 
satisfactorily, or when the vehicle is simply approaching the end of its designed ODD. The 
following issues need to be taken into account when assessing the potential safety effects of 
automated driving (OECD/ITF, 2018; Noy et. al., 2018) 

- Task allocation: which tasks are left to the humans, and which are handled by 

automation? 

- De-skilling: Lack of practice or imperfect situational awareness leads to reduced skills 

and may hence cause delays for humans to carry out the driving tasks when required. 

- Cognition: Lack of cognitive engagement in the driving task leads to lower levels of 

situational awareness, and hence longer reaction times if the automated driving 

function disengages. 

- Control: Driving is a learned skill. Less time spent driving can lead to worsening skills 
in handling the vehicle. 

Chan (2017) discusses the state-of-the-art of automated driving systems in his paper. The 
paper includes also predictions of the readiness of various systems by various OEMs. In 
addition, the paper summarises the main activities around the world related to the 
development of automated driving, at the time the paper was written. One point worth 
mentioning is the fact, that many predicted market entries have now been postponed slightly.  

Chan (2017) also brings up the major difference between the “traditional” OEMs and the new 
players on the field of automated driving. Whereas the “old” players are deploying 
automation stepwise, and with the plan “Something everywhere”, adding the driver support 
gradually, the “new” players are merely targeting at full automation in selected environments, 
so called “Everything somewhere”. Chan (2017) summarizes many studies related to the 
safety impacts of automated driving, of which many are much less optimistic than the often-
stated 90% of the accidents will be removed with the automation. One study often mentioned 
and referred to in this area is Sivak and Schoettle (2015) paper, which summarises the 
safety as follows: 
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- the expectation of zero fatalities with self-driving vehicles is not realistic 

- It is not a foregone conclusion that a self-driving vehicle would ever perform more 

safely than an experienced, middle-aged driver 

- During the transition period (human driven and self-driving vehicles sharing the road), 

safety might actually worsen, at least for the conventional vehicles. 

 
In addition to all the above listed, it is worth noting, that connected and automated vehicles 

are assumed to comply with the traffic rules better than humans: no speeding, no intoxicated 
driving, no red-light running etc. and hence have potential to increase the safety by 

decreasing the number of accidents related to the non-compliance of traffic rules and 
regulations. 

5.3.3 Implications of automated vehicles on transport planning and 
safety 

Litman (2018) presented an extensive review of existing studies and literature on the 
autonomous vehicles and impacts on transport planning, including safety. The report 
summarized the findings of benefits and costs of autonomous vehicles, as well as impacts on 
transport planning issues.  

In the introduction to his report, Litman (2018) states that the most optimistic predictions on 
the autonomous vehicle penetrations are made by the “people with financial interest in the 
industry”, and are often based on the technology adoption of consumer electronics. On the 
other hand, vehicle industry and research community are more conservative with their 
estimates.  

The most commonly mentioned benefits of autonomous vehicles are according to Litman 
(2018) reduction of driver stress. In addition, the utilization of travel time for working, or even 
sleeping is a benefit. This may reduce the travel time unit cost. Autonomous vehicles can 
also provide independent mobility for non-drivers (people who cannot or are not willing to 
drive currently). Many potential not so positive impacts are also mentioned, such as 
increased stress with the new technology, reduction of the public transport usage, and 
increased congestion. 

Litman (2018) also highlights the difference between the personal autonomous vehicles and 
shared vehicles or rides. The autonomous driving is often pictured as a mobile living room. 
This could be the case if one has his own autonomous vehicle. However, if sharing the ride 
(or vehicle), the closer comparison could be an elevator ride. Litman (2018) also discusses 
the advantages and disadvantages of personal vs. shared autonomous vehicles/rides (table 
7) 
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Table 7. Advantages and disadvantages of personal versus shared autonomous vehicles 
(Litman, 2018). 

 

 

Litman (2018) also includes discussion of the penetration rate development by comparing the 
deployment to the previous vehicle innovations, such as automatic transmission. Based on 
those, his prediction is that the autonomous features would take two to three decades to be 
incorporated into middle- and lower-priced vehicle models. 

For the traffic safety implications, Litman (2018) starts with the often stated, “autonomous 
vehicles could reduce crash rates by 90% due to elimination of human error”, but continues 
then with the additional risks the technology could introduce, such as 

- Hardware and software failures, 

- Malicious hacking, 

- Increased risk taking (offsetting behavior/risk compensation), 

- Platooning risks, 

- Increased total vehicle travel, 

- Additional risks to non-auto travelers, 

- Reduced investment in conventional safety strategies. 
 

In addition, Litman (2018) reminds that even if the autonomous vehicles would increase 
safety (per driver km), if they increased the driven kilometres, the benefit may be minimal 
(see also Nilsson, 2004). The summary of Litmans (2018) conclusions on benefits and costs 
is presented in Table 8. 
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Table 8. Summary of benefits and costs according to Litman (2018) 

 

 

Litman (2018) also estimates that the safety benefits of autonomous vehicles is only seen 
when major share of vehicle travel is autonomous. According to him, this will take until 2040-
2060’s.  

5.3.4 Simulation studies on safety effects of automated vehicles 

Safety effects on intersections 

Morando et. al. (2017 and 2018) studied safety impacts of automated vehicles by using 
VISSIM microsimulation and Surrogate Safety Assessment Model (SSAM) for two case 
studies: signalized intersection and a roundabout. They also varied penetration rate of 
automated vehicles in both cases. They assumed level 4 automation (full automation in 
NHTSA scale). In the parameter setting, the conservative values for gap acceptance etc. 
were selected due to expected OEMs willingness avoid liability due to aggressive AV 
behavior.  

Morando et. al. (2017, 2018) used surrogate safety measures to assess safety impacts of 
AVs in the two above-mentioned environments. Time-to-collision (TTC) less or equal to 1.5 
seconds was used as a threshold for potential conflicts if involving human driven vehicles 
(human driven/human driven or human driven/automated), and 1 second if between 
automated vehicles. Another surrogate measure used in the study was Post Encroachment 
Time (PET) (Post-encroachment time is conventionally defined as the time between the first 
road user leaving the common spatial zone (in a 2 road user encounter) and the second road 
user arriving at it.), and a threshold of 5 seconds was used for PET. 
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The case studies selected for the simulation and safety assessment included two different 
intersections; one signalized intersection and one roundabout. Both of the selected 
intersections were simulated models of existing intersections with the actually measured 
traffic, speed etc. available. The penetration rates of AVs were varied from 0% up to 100%, 
with the 25% steps (i.e. 0%, 25%, 50%, 75% and 100%). (Morando et. al, 2017 and 2018). 

In the roundabout, the conflicts seemed to be increasing between baseline and 25% 
penetration rate, but then decreasing, being 29% to 64% less with the 100% penetration rate 
than in the baseline (0% AVs). This result was statistically significant, p<0.05). In the 
signalized intersection the conflicts decreased with the increased penetration rate, and the 
reduction of conflicts was 20% to 65% with the penetration rates between 50% and 100% 
(both statistically significant at p<0.05). The authors conclude that a high penetration rate 
might be required to deliver AV’s anticipated safety effects. (Morando et. al. 2018). 

 

Safety effects on motorways 
Papadoulis et. al. (2019) studied the safety of connected and automated vehicles on 
motorways with the VISSIM microsimulation. They also used Surrogate Safety Assessment 
Model (SSAM) for the safety assessment. The penetration rate of CAVs was varied from 0% 
to 100% with the 25% intervals, as in Morando et. al. (2017 and 2018) studies. The 
simulation model included one motorway section (model of M1 between junctions 19 - 21, in 
UK) with 3 lanes to both directions. The total length of the modelled section was 44km, and it 
included on and off-ramps. Time to collision (TTC), and Post Encroachment Time (PET) 
were used as indicators for safety. The thresholds set to the indicators were 1.5 and 5 
seconds, respectively. 

Papadoulis et. al. (2019) found major reduction of conflicts even at low penetration rates. The 
reduction of conflicts was 12 - 47%, 50 - 80%, 82 - 92% and 90 - 94% for the 25%, 50%, 
75% and 100% penetration rates respectively. The authors list a few limitations of their study. 
First of all, it only includes motorway section. Secondly, the model allowed very long convoys 
to be built, which might not be possible in the real world, since it would prohibit other vehicles 
to merge in or out of the motorway sections. Thirdly, the malfunction or other technical errors 
were limited out of the scope of this study. One issue outside the safety effect scope is also 
the result on travel times: the travel times in the studied sector increased due to decreased 
average speed on the section. 

Discussion on the simulation as a tool to assess impacts of automated vehicles 
The authors (Morando et. al, 2018) discuss the limitations of micro-simulations as a tool for 
assessing safety impacts of automated vehicles. The first issue for the future research they 
mention is the correspondence of modelled behavior to the real-world behavior. Due to the 
deployment phase of AVs currently, the real-world data is either missing or very limited. This 
will, of course change when the development progresses and allows more on-road testing. 
One particular issue to study in the real world is the interaction between human drivers and 
automated vehicles. In addition, the car following model in the current simulation tool 
(VISSIM) may not be fully compatible with the connected and automated vehicles. Morando 
et. al. (2018) also mention that new surrogate safety measures may be needed especially for 
AVs due to their different (to human) behavior. They also remind the readers that the study 
included only two intersections, and hence the overall conclusions of the safety 
improvements to the larger network level cannot be directly drawn from these results. 
(Morando et. al. 2018). 

When considering Papadoulis et. al. (2019) results, it is important to keep in mind that those 
are purely for motorway (3+3 lane) environment, and the automation is assumed to cover 
also merging. Hence, one should not read the results as they would indicate the same 
magnitude safety effect on the other type of roads (being typically worse in traffic safety than 
motorways), and is slightly contradictory with the current ODD for AVs, which excludes on- 
and off-ramps. Most of the safety benefits in Papadoulis et. al. (2019) were found in the 
merging areas. Hence, one needs to take these positive results as indicative, and take into 
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account that they cannot be directly up scaled to the transport system as such. 

Trubia et. al. (2017) also presented a review of the road safety implications, presented both a 
list of relevant studies, and proposed how to edit the Wiedemann 99 car following 
parameters in VISSIM to simulated automated vehicles. These may be useful when further 
plan the simulations for selected MANTRA use cases.  

In general, road crashes tend to occur due to driver errors – either in perception, judgement 
or action. This will likely also apply to automated vehicles with the automated driving system 
as the driver. In order for the simulation software to be able to simulate crashes or even 
near-crashes, the driver error making would need to be a key part of the simulation system. 
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6 User acceptance and use of connected and 
automated vehicles 

User acceptance and hence use of automated vehicles is important when estimating the 
impacts. User acceptance can guide the adoption or rejection of systems and must therefore 
be examined in detail to understand what is acceptable and what is not, and for what kind of 
reasons (Rämä and Kuisma, 2018). CARTRE selected the following user acceptance related 
KPIs for further impact analysis work (Table 9). 

Overall, user acceptance and use of automation in various situations have great impacts on 
the realization of the intended benefits of automation (table 10). Currently, user have positive 
expectations towards automation, but also many concerns (see e.g. Schoettle and Sivak, 
2014, Penttinen et. al, 2019). 

 

Table 9. KPIs for user acceptance according to CARTRE-project (Rämä and Kuisma, 2018). 

Name of KPI Definition of KPI (unit) Targeted direction 
of change from 
societal 
perspective 

Use of automated driving 
functions 

Share of kms driven within the ODD 
when the driver decides to use 
automation 

Increase 

Requirement of attention and 
concentration (for driving) 

Whether the driver has to be attentive to 
driving or not, and to what extent (varies 
with SAE level). 

Decrease 

General feeling/acceptance 
of general public 

The public considers that AD is reliable, 
safe, and useful and might be used for 
the purpose it is intended to. 

Increase 

Trust (Connected and 
Automated Driving, CAD, 
users) 

Experienced trust (Likert scale: e.g. I do 
not agree at all – I fully agree in 5 steps) 

Increase 

Perception of reliability Experienced reliability (Likert scale) Increase 

Perceived usefulness Experienced usefulness (Likert scale) Increase 

Perceived comfort Experienced reliability (Likert scale) Increase 

Feeling of safety (from the 
perspective of vehicle users) 

Subjective safety (Likert scale) Increase 

Feeling of control of the 
overall situation (from the 
perspective of vehicle users) 

a) Feeling of being able to control the 
vehicle at any time 
b) Feeling of control over the vehicle 
while the system is driving  
(Likert scale or share of time when 
feeling able to have control) 

a) Increase 
  
b) Decrease due to 
delegation of 
responsibility to AV 

Intended use Will the drivers think they would use the 
AD systems more and more often? 

Increase 
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Table 10. CARTRE-project example of calculating the system penetrations (and use) in actual traffic for selected ADFs. 

Deployment / system penetration in ~2035 

Application 

Targeted vehicle 

type (vehicle 

population) 

A = % of 

targeted 

vehicles  

AD 

equipped 

Definition ODD 

% vehicle 

kms 

represented 

by targeted 

ODD 

% vehicle 

kms driven 

by target 

vehicle 

population 

in ODD 

% vehicle kms 

of targeted ODD 

which can be 

used by target 

population (free 

of system 

limitations/ 

constraints) 

% usage 

within ODD 

where there 

are no 

limitations 

for target 

population 

% of all vehicle 

kms driven by 

AD equipped 

vehicles where 

system can be 

used and is 

used 

% of all vehicle 

kms driven by 

AD equipped 

vehicles where 

system can be 

used and is 

used, limited to 

the ODD 

Label   A   B C D E F G 

Calculation           Assumption   A x B  x C x D x E A x C x D x E 

Highway Autopilot /cars All cars 50% 

Motorway - 

Interurban and 

urban 

16.9% 79.3% 80% 80% 4.29% 25% 

Urban & Suburban Pilot (USP) All cars 25% Urban Spacious 13.9% 86.4% 80% 20% 0.48% 3% 

Automated Valet Parking 

(AVP) 
All cars 60% 

Parking lots (not 

represented in 

the veh-kms) 

0.0% 0.0% 80% 90% 0.00% 0% 

Highly Automated Vehicles on 

Dedicated Lanes/roads/areas 
    Not analysed             

(Organized) Highway pilot 

Truck Platooning 
    Not analysed             

Private operated, Automated 

Personal Rapid Transit 

(PRT)/Shuttles in Mixed Traffic 

All 

taxis/commercial 

ridesharing services 

(e.g. Uber) 

40 % 

Urban - 

compact and 

spacious 

27.8% 4.3% 80 % 100 % 0.38 % 1 % 

Public operated, Automated 

buses (and trams) in Mixed 

Traffic 

PT buses 40 % 

Urban - 

compact and 

spacious 

27.8% 1.5% 80 % 100 % 0.13 % 0 % 
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7 Impacts of connected and automated driving on 
Energy & Environment 

7.1 Energy 

Automation and connectivity of vehicles can have large effects on the energy and carbon 
footprints of how we travel in future. While early researchers have focused on the potential 
for reducing energy and carbon footprint, suggesting as high as a 90% reduction in 
greenhouse gas emissions (Greenblatt and Saxena 2015), careful review shows that most of 
that reduction arise, not from automation, but rather from electrification. Recent studies 
rather point to uncertain energy and carbon effects of automation (Wadud et al. 2016, 
Taiebat et al. 2018, Chen et al. 2019) and often warn against potential unintended 
consequences.   

Wadud and Anable (2016) adapted Milakis et al.’s (2016) ripple approach to understand the 
energy and carbon impacts of vehicles automation. The ripple diagram in Figure 9 presents 
qualitatively the first, second and higher order impacts of automation. What this shows is that 
energy and carbon impacts of vehicle automation are not first order effects, but happens 
through other direct effects of automation.   

 

 

 

Figure 9. Energy and carbon ripple effects of vehicle automation (source Wadud and Anable 
2016)  
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Wadud et al. (2016) and Brown et al. (2014) suggest a decomposition framework in order to 
quantify and bound the potential energy and carbon effects. They use the carbon 
decomposition framework in Eq. 5.1 to highlight that investigating only energy efficiency 
effects, which is often the focus of energy engineering, misses the wider picture – especially 
the potential effects of radical changes in mobility and travel demand.   

Carbon emissions = Travel demand × Energy intensity of travel × Carbon intensity of energy         

 

Wadud et al. (2016) quantified several of the pathways to energy effects and suggest the 
following:  

 

• Traffic flow can be streamlined and optimized for fuel consumption with automated 
vehicles connected to the network;  

• On motorways, automated vehicles can drive very close to each other, creating 
platoons, thus reducing aerodynamic drag at high speed and fuel consumption;    

• The automated vehicles can be programmed to run on an eco-driving mode (driving 
practices that can reduce fuel consumption);  

• At very high level of penetration, automated vehicles can be light-weighted as crash 
risks fall dramatically (currently, nearly 90% of traffic fatalities are attributed to human 
errors);   

• Lower engine performance requirements for automated driving (decreases 
consumption).   

• Right-sizing of vehicles made possible by self-driving shared-cars (decreases 
consumption);      

• Higher speed limits resulting from increased safety (increases consumption); 

 

Figure 10. Potential impact of vehicle automation on energy demand through various 
mechanisms (source Wadud et al. 2016) 
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All of these mechanisms improve 'fuel efficiency' of individual vehicles, except for potential 
increase in fuel consumption due to higher speed. Right sizing of vehicles (matching trip type 
to vehicle type) is also dependent on a shift away from ownership to sharing, which is a large 
uncertainty, as discussed earlier in section 2. Figure 10 presents the results of the bounding 
exercise for energy effects of vehicle automation in the US. 

One area that has not received much attention in this literature is the additional energy 
consumption in vehicles due to the computational requirements. Gawron (2018) suggests an 
increase in life cycle energy use of 3% to 20% due to increased weight from ICT equipment 
and associated computing and data transfer. This could also nullify some of the energy 
efficiency gains in Figure 10. Of course, when the development and deployment of 
automation happens gradually, the computing capacity increases remarkably during this 
time, too. Hence, this may not be such an issue in the future. 

Studies reviewed earlier in section 2 agree with Wadud et al. (2016) suggestion that travel 
demand could increase substantially due to vehicle automation, which could nullify any gains 
in energy efficiency. Indeed Wadud et al. (2016) and Auld et al. (2017) report very similar 
results on potential increases in energy demand due to changes in travel demand, despite 
quite different modelling strategy and geographic coverage. Recent studies (Chen and 
Kockelman 2016) also suggested that travel demand due to increases in empty running in an 
automated mobility regime might be larger than that in Figure 15 (changed mobility services). 
Especially Arbib and Seba (2018) show a large transition away from ownership to automated 
mobility service could still increase Vehicle Mileage Travelled by 50% in the US.   

Fulton et al. (2017) uses a global scale model and suggest that the combined reduction in 
energy use due automation, electrification and sharing can be as high as 70% in the 
passenger travel sector. Naturally, this relies on strong assumptions of all the mechanisms 
discussed earlier to be aligned toward the same direction. Overall, Chen et al. (2019) 
suggest a net reduction of 45% in the optimistic scenario or a net increase of 30% in the 
pessimistic scenario for the light duty fleet in the USA, revealing the uncertainty in energy 
impacts, which appear more plausible.    

While most of these studies focus on passenger transport, there is little on freight transport 
(Taiebat et al. 2018). Only Wadud et al. (2016) suggest potential net reduction (combination 
of energy efficiency and travel demand) of 10% to increase of 40% in freight energy 
consumption in the US due to vehicle automation under different scenarios. Further research 
in this area is necessary to ascertain the potential impacts.   

7.2 Carbon 

As seen from the Eq. 5.1 above, the effects of automation and connectivity on carbon 
emissions are also related to travel demand and energy efficiency, which has been 
discussed above and is relevant here, too. On top of it, the important question is whether 
automation can encourage a transition to electrification or other alternate-low carbon fuel 
sources, which could reduce carbon intensity of the energy sources and thus overall carbon 
emissions. Automation has some important synergies with low carbon transition of the 
personal road transport sector (Wadud et al. 2016):   

• One of the largest barriers in energy transition is whether to build the supply 
infrastructure first (which is expensive) or to encourage demand (which is difficult if 
there is a lack of supply infrastructure). Automated vehicles could refuel in an 
unattended mode on their own when they are not being used, thus circumventing the 
initial inconvenience of refueling from a scarce alternate fuel station.   

• Most low-carbon fuels have low volumetric energy density and high storage costs, 
resulting in a lower operating range. Of course, if autonomous vehicles could 
refuel/recharge themselves, this barrier will decrease.  



CEDR Call 2017: Automation 

 

Page 52 of 63 

• In an automated on-demand mobility environment, the vehicles are utilized intensively 
compared to owned vehicles. As such, the high capital costs of alternate fuel vehicles 
could be recouped via this higher utilization. Recent estimates for electric automated 
mobility services indeed show low per-mile costs of automated on demand mobility 
services (Wadud and Mattioli 2019).      

 

While all of the above factors are applicable for electric automated vehicles, automation and 
electrification have a few more synergies, such as (Anair 2017):  

• Automated vehicles use electric power for on-board computing and sensors, and 
electrification for traction and computing requirements appear a natural choice.   

• Automation can assist electrification through battery operation and recharging 
management – both in an owned or mobility on demand regime.  

Authors such as Greenblat and Saxena (2015) and Fulton et al. (2017) suggest a potential 
reduction of carbon emissions of up to 80% to 90% due to automation, electrification and 
sharing. However, these are very optimistic scenarios and are not a direct result of 
automation, rather a combination of different factors – all working together in the same 
direction. Especially, there is often an assumption that all automated vehicles will be electric 
– however, absent strong policies toward electrification, this is not guaranteed as an 
automated conventional vehicle could still be financially more attractive compared to an 
automated electric vehicle, but this depends on many factors, such as purchasing cost, 
energy cost, and the availability of charging in the area the vehicle is operating.  

In summary, there are still large uncertainties in the quantification of net energy and carbon 
effects of vehicle automation and connectivity. While substantial reduction is possible, it is 
not a direct consequence of automation, but rather due to vehicle operations and design or 
transport system optimisation, that can be facilitated by automation and connectivity.   

• Some of the reductions in energy demand could be brought about by a higher degree 
of connectivity, even at a lower level of automation than self-driving cars.   

• For fully automated vehicles, there is a substantial risk of increased travel and energy 
demand, even in an on-demand automated mobility future.   

• While electrification has some synergies with automation, policies need to be there in 
order to ensure that automated vehicles are electric, in order benefit the most from 
this technology.   

7.3  Noise 

The noise level of a road section depends on the following traffic properties (in addition to 
road properties): vehicle volume, share of heavy vehicles, share of motorcycles, average 
speed. However, there is a lack of studies on the effects of automated vehicles on noise 
pollution. The primary effects can comprise the following:  

• Automation will affect travel demand (Vehicle Mileage Travelled, trip pattern, etc.), 
which could either increase (empty trips) or reduce (automated ride sharing) noise 
pollution.  

• Automated vehicles, if accompanied by electrification, could substantially reduce 
noise, especially in the urban, low speed environment, where engine noise governs.  

• Automated vehicles will likely not accelerate and decelerate as much as human 
driven vehicles, and thus reduce noise pollution.   
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8 Discussion 

This report presents an overview of the impacts of connected and automated driving on 
mobility and travel behaviour, driving behaviour and traffic flow, traffic safety and energy and 
environment. The review is based on the available literature and ongoing EU and national 
projects in the relevant area. 

It is important to keep in mind that even if the search for the literature and studies is 
extensive, it only gives an overview of the situation as of today. Most of the impact estimates 
are based on either expert evaluation or traffic simulation or make their assumptions based 
on the available studies on driver assistance systems. It is of utmost important to continue 
following the studies in this area, to complement the results when on-road testing of 
automation and data received from those tests is available in large scale. In addition, one 
area, which remains open, and which will definitely develop over time, is the interaction 
between automated vehicles and other road users.  

Moreover, even the models for estimating impacts, e.g. traffic microsimulation models, still 
need adjustment and parameters for automated vehicles. The current behavior, e.g. car 
following behavior, is mostly based on the behaviour of human drivers. In addition, it is 
important to notice, that even the behavior of human drivers might change when interacting 
with automated vehicles. The development of the technology also have great impact on the 
area and conditions where automation can be used (ODD), and hence can have impacts in. 

One can anticipate, that AVs in mixed traffic will tend to drive at longer following distances so 
as to permit less rapid deceleration when the preceding vehicles slow down, to negotiate 
sharp curves at lower speeds and to be less prone to undertake rapid manoeuvres such as 
abrupt lane changes compared to human drivers in the same situations. Such smoother 
driving may reduce incidents, but there might also be an impact in traffic throughput, i.e. 
decreased capacity. 

Another issue closely related to capacity, is that automated vehicles even when shared can 
compete with public transport and active transport modes (walking and bicycling) leading to 
better individual mobility but less transport system efficiency.  

The earlier presented nine impact mechanisms (e.g. Kulmala, 2010) need to be kept in mind 
when considering the variety of impacts of connected and automated driving not only to 
traffic safety, but also to other impact areas. Additionally, the ripple effect (Milakis et. al. 
2017) and the impact paths created by the Trilateral Impact Assessment group (Innamaa and 
Kuisma, 2018) reminds the reader of the variety of impacts the introduction and deployment 
of automation may have on the transport system.  

The variety of studies reviewed for this paper give an overview of the expected impacts of 
the deployment of connected and automated driving. As the reader can see when going 
through the various impact areas, the expectations of the magnitude of the impacts vary a 
lot. Where someone is expecting the traffic safety to be improved by 90%, the others are 
much more conservative and present only one-digit estimates. The same applies for other 
impact areas. When assessing safety, the additional risks the technology could introduce, 
needs to be taken into account. Moreover, as long as there is mixed traffic, i.e. not all the 
vehicles are fully automated, the conventional safety strategies are still needed.  

As many of the studies summarized in this deliverable also, remind: automation is not the 
only megatrend that affects the road transport in the oncoming years. Shared mobility is one 
issue, which may have great impact on how people select to move around. In addition, 
electrification will certainly have an impact on CO2 emissions, and maybe even on travelling 
patterns.  
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The content of this deliverable will be presented and discussed with CEDR in a mini-
workshop in September 2019. Based on that, the further work on modelling and simulation in 
WP3 will be planned in details. The outcomes of this WP will contribute to the further work in 
MANTRA where the consequences of automation to infrastructure and road operators’ core 
businesses will be elaborated.
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