

Welcome and introduction

14.15 – 15.45 hybrid presentation session

afterwards in person training sessions

Programme Day 1 (in-person and online)

13:00	Registration & lunch
14:00	Welcome and introduction
14:15	Hybrid session - presentation of ICARUS project results with Q&A session: ICARUS - Improve the uptake of Climate change Adaptation in the decision making processes of Road aUthoritieS
15:45	Break
16:00	Demonstration and training on the ICARUS climate change adaptation implementation process (<i>in-person only</i>)
18:00	End of Day 1
19:00	Dinner (Restaurant La Tasca, Voldersgracht 13 & 14, Delft)
CED	R Conférence Européenne des Directeurs des Routes Conference of European Directors of Roads Programme Day 2 <i>(in-person only)</i>
09:00	Demonstration and training on the use of impact chains to understand climate resilience
10:15	Break
10:30	Demonstration and training on the use of the adaptation options database and evaluation approaches of adaptation options
12:30	Lunch
13:30	Demonstration and training on specific recommendations to include Nature Based Solutions in climate change adaptation solutions
14:30	Break
14:45	Demonstration and training on overcoming implementation barriers
16:00	Summary of obtained feedback, open questions, implementation issues and Closing remarks
17:00	End of Conference

To connect to the WiFi

- Go to eduroam.deltares.nl
- Register
- Receive an sms
- Use received log-in information to connect to the eduroam WiFi

In case of questions

- For people online: use the chat
- For people in Delft: raise your hand

When joining the teams session from Delft, please make sure

• Mute yourself

Sound off

Programme Day 1 (in-person and online)

13:00	Registration & lunch
14:00	Welcome and introduction
14:15	Hybrid session - presentation of ICARUS project results with Q&A session: ICARUS - Improve the uptake of Climate change Adaptation in the decision making processes of Road aUthoritieS
15:45	Break
16:00	Demonstration and training on the ICARUS climate change adaptation implementation process (in-person only)
18:00	End of Day 1
19:00	Dinner (Restaurant La Tasca, Voldersgracht 13 & 14, Delft)
	Conference Européenne des Directeurs des Routes Conference of European Directors of Roads Programme Day 2 (in-person only)
09:00	Demonstration and training on the use of impact chains to understand climate resilience
10:15	Break
10:30	Demonstration and training on the use of the adaptation options database and evaluation approaches of adaptation options
12:30	Lunch
13:30	Demonstration and training on specific recommendations to include Nature Based Solutions in climate change adaptation solutions
14:30	Break
14:45	Demonstration and training on overcoming implementation barriers
16:00	Summary of obtained feedback, open questions, implementation issues and Closing remarks
17:00	End of Conference

Improving the uptake of Climate Change Adaptation in the Decision-Making processes of Road Authorities; output of the ICARUS project

Thomas Bles, Deltares

Enhancing resilience via adaptation

Plenty of research on resilience

- Risk and resilience frameworks
- Resilience assessment tools
- Adaptation frameworks

Implementation is lacking

- Existence of tactical gap; no line of sight
- Unclear level of acceptable risk
- Insufficient connection to decision
 making
- Economic appraisal of adaptation options is uncommon
- Insufficient inclusion of relevant NRA stakeholders

Resilience and climate change adaptation frameworks exist

Resilience and climate change adaptation frameworks exist

Resilience and climate change adaptation frameworks exist

				_				CEN	CWA 17910
STEPS	1. SCOPING AND DATA GATHERING	(2. MATERIALITY ASSESSMENT		B. RESILIENCE		4. ECONOMIC AND FINANCIAL ANALYSIS	WORKSHOP AGREEMENT	November 2021
OBJECTIVE	DETERMINE DATA SUFFICIENCY		ASSESSING ASSET RESILIENCE		IDENTIFYING RESILIENCE OPTIONS		DE-RISK ASSET EXPOSURE TO PCRS	ICS 03.220.01; 13.200 English ve	rsion
SUB-TASKS	 Project Initiation Project Definition Data Gathering and Sufficiency 		 Hazard Scenarios Impact Identification Impact Severity Risk Quantification 		 Resilience Options: Hard (structural / capex) Soft (operational / systems Repeat Materiality Assessment 		 Cost / benefit analysis IRR comparison 	Guidelines for the assessmen infrastructure to potenti This CEN Workshop Agreement has been drafted and approved by a constitution of which is indicated in the foreword of this Workshop The formal process followed by the Workshop in the development of National Members of CEN but neither the National Members of CEN accountable for the technical content of this CEN Workshop Agreem This CEN Workshop Agreement can in no way be held as being an o	t of resilience of transport ally disruptive events Workshop of representatives of interested parties, the Agreement. If this Workshop Agreement has been endorsed by the nor the CEN-CENELEC Management Centre can be held sent or possible conflicts with standards or legislation. fficial standard developed by CEN and its Members.
OUTPUTS	 Initial climate study Critical components KPI selection (the "base case") 		 Detailed Climate Study List of impacts and severity by component The "Climate Case" 		 Revised climate study for new elements The "Resilience Case" 		 Recommendations Value implications 	This LEN WORKSROP Agreement is publicly available as a reference of CEN and CENEEC members are the national standards bodies and national Cyprus, Czech Republic, Demarik, Erotnai, Finland, Prance, Germany, Greec Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Turkey and United Kingdom.	ocument from the ULW Memoers National Standard Bodies. slectrotechnical committees of Austria, Belgium, Bulgaria, Croatia, Hungary, Iceland, Ireland, Haly, Lavia, Lithuana, Luxembourg, Romania, Serbia, Slovaka, Slovenia, Spain, Sweden, Switzerland,
DEC	SISION GATES	G Is ar	Cate A data good nd sufficient?	Ga Are to t	Ite B PCRs material his asset?	Ga Wł are	ate C nat resilience options available for this asset?	EUROPEAN COMMITTEE COMITÉ EUROPÉEN	FOR STANDARDIZATION DE NORMALISATION
	Source: CCRI 20	022	2					 EUROPÄISCHES KOM CEN-CENELEC Management Centre:	ITEE FÜR NORMUNG Rue de la Science 23, B-1040 Brussels

All rights of exploitation in any form and by any means reserved worldwide for CEN national Members and for © 2021 CEN/CENELE CENELEC Members.

Source: CEN 2021

- CEDR call 2021: Climate Change Resilience
- June 2022 May 2024
- Partners
 - Deltares (coordinator, The Netherlands)
 - Tecnalia (Spain)
 - Ramboll (Finland, Denmark)
 - Research Driven Solutions (Ireland)
 - Maple Consulting (UK)

To provide guidance and guidelines on how to build and implement the business case for resilience via adaptation, by balancing the service levels that the road network needs to achieve with the costs and benefits for enhancing resilience

To ensure that existing research and new ICARUS research can be implemented in practice by NRAs as well as by their supply chain stakeholders

- ICARUS provides targeted research to enhance the use of the framework
- In this presentation: the core research results

Existence of a tactical gap

Existence of a tactical gap

Influence guidelines on performance not understood (input -> output)

Quantitatively not understood how input via design and maintenance leads to a specific output in terms of KPIs Effectiveness of adaptation options unknown

The dose-effect relationship is often not well understood. This makes it complex to identify the effectiveness of adaptation options.

Furthermore, understanding how this leads to changes expressed in KPIs is unknown. Specific contribution of climate hazards unknown

Decision-making is often based on KPIs

Within these KPIs climate hazards are often not evaluated separately

Complicated by a lack of understanding how climate hazards lead to a change in performance of the KPIs.

Existence of a tactical gap

NRA decision criteria

Service driven

Ensuring a minimum service level

• • •

Budget driven M

Maximum service with given budget

Optimum service

Strive for service levels where costs and benefits are balanced

Biodiversity Carbon Climate change adaptation Environmental partnerships Equity and inclusion

ICAR

Output and input based steering mechanisms

KPI's (output)

Availability Safety Environmental effects Road user needs Resilience

Other policies Biodiversity Carbon Climate change adaptation Environment Inclusion

Key Performance Indicator	Metric	Possible unit
Availability, Or sometimes referred to as	Delay	Vehicle Loss hours; sometimes categorised by unplanned and planned closures An average delay per vehicle distance
fast and reliable journeys	Network availability	% of time and length in a year that a road or part of a road is closed; sometimes categorized by unplanned and planned closures Average speed
	Travel time	Average travel time to relevant points of interest Journey time reliability
	Social inclusion	Average travel time to basic everyday activities
	Incident clearance	Average time needed to re-open a (part of) the road after an incident happened
Safety	Killed or seriously injured	Number of casualties Number of injuries
	Incidents	Number of collisions
	infrastructure safety,	% distance driven over roads with a safety rating above an agreed threshold % road network length of roads with a safety rating above an agreed threshold
	emergency response	Average time needed for first responders to be at the location of an incident
	in time preparedness for extreme weather	percentage of time and length for which the road was prepared in time for the extreme weather

Benefit	Description	Quantification	Valuation	magnitude of impact		
Availability						
Travel time, leisure	Value of travel time for persons in their leisure time	Minutes of increase/decrease in travel time	Travel loss hours / value of travel time	Number of users of network and level of change		
Travel time business	Value of travel time for businesses	Minutes of increase/decrease in travel time	Travel loss hours / value of travel time	Number of users of network and level of change		
Reliability of travel time	The value of reliability of predicted travel time for users	Reliability of predicted travel time measured as e.g., percentage of average travel time of a road network	Value of reliability	Number of users of network and level of change		
Availability of network	The value of being able to always access public services and critical infrastructure					
Availability: Connectivity and social inclusion	Connectivity and travel time to basic everyday activities	-	-	-		
Durability		-	-	-		
Replacement	Costs associated with wages, materials etc.	Hours worked, units of material, fuel machine hours etc	Wages, costs of materials, fuels, machinery, etc.	-		
Upgrading	Costs associated with wages, materials etc.	Hours worked, units of material, fuel machine hours etc	Wages, costs of materials, fuels, machinery, etc.	-		
Safety	Value of injuries/fatalities	Increase/decrease in the risk of injuries/fatalities	Value of statistical life	Number of users of the network and level of change		
Health effects		-	-	-		
Air pollution	Improved air quality from increased coverage of plants	Increase/decrease in the level of particle matter	Value of statistical life, quality adjusted life year	Number of affected individuals and level of change		
Noise	Lowered noise levels from noise barriers of coverage from plants	Increase/decrease in the level of decibel	Value of statistical life, quality adjusted life year	Number of affected individuals and level of change		
Job creation	Job creation from investment in climate adaptation/resilience	-		-		
Ecosystem services	Value assigned to areas due to their aesthetics, opportunities for walking, socializing etc.	Increase/decrease in level of greening or ha of green areas	Stated/revealed preference methods	Number of users of the area, and level of change in provision of environmental good		
Water quality	Value assigned to good quality of water, e.g., stemming from conta- minants from run-off	Increase/decrease in quality status, e.g., ecological status based on threshold values		Number of affected individuals and level of change.		
Climate						
Embodied carbon	Emissions arising from construction materials, transport, and installation	Increase/decrease in the number of embodied carbon emissions	Social cost of carbon	Level of change in the number of embodied carbon emissions		

Building the case for adaptation: 3 approaches

- To underpin need for adaptation
- To understand relation between climate and performance
- To understand dose-effect and effectiveness of measures

Disadvantages

- Only provides arguments
- Only for frequent events
- Necessary to have proper monitoring

- Straightforward
- No change in performance
- Adaptation of guidelines will lead to 'automatic' adaptation in practice

Disadvantages

- No optimized performance
- No insight in additional benefits (no additional budgets)
- No expansion of knowledge base

- Optimum/efficient use of public money
- Adaptation of guidelines will lead to 'automatic' adaptation in practice
- Expansion knowledge base

Disadvantages

- Case based research requests higher need for resources
- Elaborate approach
- Data availability
- Possible extensive discussions to adapt guidelines

ICARUS

- Optimum/efficient use of public money
- Especially worth considering for bigger projects
- Gradual increase of knowledge base and ability to later link approach 2b

Disadvantages

- Not efficient to do such analyses for all projects
- Resources not sufficiently available at operational level

Adaptation Implementation Process

- All management levels should be engaged
 - Continuous shifts
 - One person in charge recommended
- Link with the decision context is key
 - Resilience and adaptation assessments should be tailored
- Understand how climate change affects performance
- Implementation via two routes
 - Adapting asset management
 - Individual project level

Adaptation Implementation Process

- All management levels should be engaged
 - Continuous shifts
 - One person in charge recommended
- Link with the decision context is key
 - Resilience and adaptation assessments should be tailored
- Understand how climate change affects performance
- Implementation via two routes
 - Adapting asset management
 - Individual project level

Three baseline reports

- 1. Enhancing understanding of resilience and adaptation
- 2. Enhancing implementation at road authorities
- 3. Nature Based Solutions
- 4. Dissemination of results

1. Impact chains

- A tool to enhance understanding of the way Climate Impact Drivers will impact the road network
 - Hazard
 - Exposure
 - Vulnerability
 - Impact
- To inform the climate change resilience assessment and Adaptation Strategies

1. Impact chains

2nd step: the location

Could you identify and locate the ecosystem (natural and economic) that could be subject to potential adverse impacts? 1st step: thinking about CID

Is there any potential occurrence of natural and human-induced event or trend that may cause loss of life, injury, or other health impacts, as well as damage and loss to property, infrastructure, livelihoods, service provision, ecosystems and environmental resources?

4rd step: impacts as adverse and beneficial effects

Could you think on the consequences of realized risks on natural and human systems, where risks result from the interactions of climate-related hazards (including extreme weather and climat events), exposure and vulnerability (e.g. effects on lives, livelihoods, health and wellbeing, ecosystems and species, economic, social and cultural assets, services and infrastructure).

Attention: Impacts may be referred to as consequences or outcomes and can be adverse or beneficial (e.g. cobenefits provided by NBS).

RISK OF FONCTIONALITY LOSS DUE TO ...

Could you think on the propensity or predisposition to be adversely affected according to the intrinsic factors of the infrastructure itself (design and current state of the asset), varying its ability to withstand the impacts derived from CID?

1. Impact chains

KPI

KPI

RISK OF FONCTIONALITY LOSS DUE TO HEATWAVES

- 1. Impact chains
- 2. Resilience impact score
- 3. Adaptation options database

CEP R Chifrence Européenne de Directors des Routes Directors of Rouges Directors of Rouges	
ICARUS Ingrove the uptain of Climate change Adaptation in the decision making processes of Read all/thoritis	
Guidelines providing an overview of and characterisation of adaptation options, with recommendations on <u>implementation</u> Deliverable D2.3 Version 2.0	
March 2024	

G	Climate Impact Driver				Adaptation Option Characteristics										
Climate Impact Driver	Sub-driver	Type of event (Extreme event or slow-onset process or trend)	Impact on Infrastructure	Adaptation Option	Applicable Asset Type	Asset Scale (Object / Connection / Network)	Road Project Life Cycle Stage	Impact Chain Stage 1. Hazard 2. Exposure 3. Vulnerability 4. Impact	Disaster Risk Management Cycle Stage Prevention Preparedness Response Recovery	Short/ Long Term Solution	Is the climate impact driver addressed?	Is this a Nature- Based Solution?	NbS Comment	NBS Evidence Base	Can Emerging Technologies be applied?
	Extreme Heat	Extreme event	07-3 Impact on road works: decreased time window for paving due to heat waves (maximum and minimum diurnal temperature and number of	Modify the concrete mixture to ensure adequate workability and curing time	Concrete pavements	Connection	Construction	3. Vulnerability	Prevention	Short term (operational and tactical)	Yes	no			Yes
	Extreme Heat	Extreme event	07-3 Impact on road works: decreased time window for paving due to heat waves (maximum and minimum diurnal temperature and number of	Restrict working in high temperatures	Concrete pavements	Connection	Construction	3. Vulnerability	Prevention	Short term (operational and tactical)	No	no			No
	Extreme Heat	Extreme event	07-3 Impact on road works: decreased time window for paving due to heat waves (maximum and minimum diurnal temperature and number of	Restrict concrete paving during periods of heavy rain	Concrete pavements	Connection	Construction	3. Vulnerability	Prevention	Short term (operational and tactical)	Yes	no			No
	Extreme Heat	Extreme event	07-3 Impact on road works: decreased time window for paving due to heat waves (maximum and minimum diurnal temperature and number of	Working during the night	Bituminous pavements	Connection	Construction	2. Exposure	Prevention	Short term (operational and tactical)	No	no			No
	Extreme Heat	Extreme event	07-3 Impact on road works: decreased time window for paving due to heat waves (maximum and minimum diurnal temperature and number of	Working during the night	Concrete pavements	Connection	Construction	2. Exposure	Prevention	Short term (operational and tactical)	No	no			No
	Extreme Heat	Extreme event	08-01 Melting asphalt, asphalt rutting increase due to material constraints, thermal expansion on bridge expansion joints and paved	Modification in road pavement design and maintenance, changing, for instance, asphalt properties.	Pavements: bituminous, concrete, semi-	Object - Connection	Construction	3. Vulnerability	Preparedness	Short term (operational and tactical)	Yes	no			Yes
	Extreme Heat	Extreme event	08-01 Melting asphalt, asphalt rutting increase due to material constraints, thermal expansion on bridge expansion joints and paved	Modification in road pavement design and maintenance, updating construction and maintenance standards.	Pavements: bituminous, concrete, semi-	Network	Initial Proposal Stage	3. Vulnerability	Preparedness	Long term (tactical and strategic)	Yes	no			Yes
	Extreme Heat	Extreme event	06-6 Decrease in skid resistance on pavements from migration of liquid bitumen due to maximum and minimum diurnal temperature and number of	Anti-oxidation additives	Pavements: bituminous, concrete, semi-	Network	Initial Proposal Stage	3. Vulnerability	Preparedness	Short term (operational and tactical)	Yes	no			Yes
	Extreme Heat	Extreme event	06-6 Decrease in skid resistance on pavements from migration of liquid bitumen due to maximum and minimum diurnal temperature and number of	Cold mill and overlay, thin surface patches	Pavements: bituminous, concrete, semi-	Connection	Operation and Maintenance	3. Vulnerability	Recovery	Short term (operational and tactical)	Yes	no			Yes
	Extreme Heat	Extreme event	06-6 Decrease in skid resistance on pavements from migration of liquid bitumen due to maximum and minimum diurnal temperature and number of	Harvesting of heat energy from the pavement	Pavements: bituminous, concrete, semi-	Object - Connection	Initial Proposal Stage	3. Vulnerability	Prevention	Short term (operational and tactical)	Yes	no			Yes
	Extreme Heat	Extreme event	06-6 Decrease in skid resistance on pavements from migration of liquid bitumen due to maximum and minimum diurnal temperature and number of	High albedo pavements, heat shield pavements, water retention pavements	Pavements: bituminous, concrete, semi-	Connection - Network	Initial Proposal Stage	3. Vulnerability	Prevention	Short term (operational and tactical)	Yes	no			Yes
	Eutrome Heat	Eutrome quant	06-6 Decrease in skid resistance on pavements from	Discing warping signs	Pavements:	Connection -	Operation and) Exposure	Dropprodpose	Short term	No				No

• > 500 adaptation options

- 1. Impact chains
- 2. Resilience impact score
- 3. Adaptation options database
- 4. Assessment opportunities of adaptation options

- Proposed assessment structure
 - Climate Impact Driver
 - Critical contextual information
 - Effectiveness of adaptation option
 - Involved NRA process and typical NRA guidelines
 - Best practices
 - Lifetime of adaptation option
 - Dependencies with other developments
 - Valuation (cost, benefits, co-benefits)
 - Relevant data and sources

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- KPI requirements
 - Include extreme events
 - Have appropriate spatial scale
 - Consider seasonal KPIs
- Influencing decision making
 - Understand NRA steering
 mechanisms
 - Understand the line of sight
 - Understand dose-effect relation for adaptation options
 - Communicate with all relevant managerial levels
- Identify (co-)benefits based on decision context

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

ICAR S

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- Barriers to adaptation
 - Lack of information
 - Knowledge on climate change
 - Asset information
 - Network performance
 - KPI information
 - Lack of resources
 - Skilled personnel
 - Funding
 - Organisational barriers
 - Lack of engagement
 - Lack of planning
 - Lack of buy-in from others
 - Procurement challenges

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- Dedicated communication
 - Strategic
 - Tactical
 - Operational
- Depending on NRA maturity level
 - Getting started awareness
 - Embedding process building business cases
 - Processes embedded good practices
- Several examples of communication; to be connected to objectives
 - Maps
 - Storylines
 - Flow charts, graphs
 - Factual tables
 - Etc.

- 1. Connect to the context for decision making
- 2. Three approaches to facilitate decision making
- 3. ICARUS adaptation implementation process
- 4. Defining optimum service levels
- 5. Solutions to overcome implementation barriers
- 6. Dedicated communication of results
- 7. Training package

- Presentations to different audiences
 - Strategic and tactical level short
 - Tactical and operational level detailed
- Recorded as webinars
- Frequently Asked Questions
- Icarus Quiz

- Drivers and barriers for NbS implementation
- Implementation guidelines
- Evidence base for effectiveness of NbS
- Making the case for NbS

Defining Nature Based Solutions

- Is the measure inspired and supported by nature?
- Is the measure cost effective?
- Does the measure simultaneously provide environmental, social and economic benefits?
- Does the measure help build resilience?

ICAR

Defining Nature Based Solutions

- Is the measure inspired and supported by nature?
- Is the measure cost effective?
- Does the measure simultaneously provide environmental, social and economic benefits?
- Does the measure help build resilience?

INCREASED **REDUCTION OF** MICRO-CLIMATE CARBON RECREATION TRAFFIC SAFETY **INJURIES** REGULATION STORAGE $\overline{\mathbf{O}}$ BRANDING CLEAN AQUATIO AIR PHYSICAL CARBON INCREASED QUALITY TOURISM ENVIRONMEN[®] ACTIVITY SEQUESTRATION BIODIVERSITY WATER QUALIT BEAUTIFICATION LOCAL LOCAL EDUCATI ECONOM IDENTIT

Why Nature Based Solutions

- Natural resilience
- Cost effectiveness
- Multiple benefits
- Adaptability
- Reduced environmental impact

- Enhanced social equity
- Community engagement
 - Enhanced reputation

Drivers

- Answers societal challenges
- Carbon storage
- Mitigating greenhouse gas emissions
- Biodiversity
- Ecosystem services

Barriers

- Lack of resources
- Uncertainty
- Organisational engagement, both internally and externally
- Integration in standards and specifications
- Maintenance

Dissemination of results

- 1. Website and case study portal
- 2. Presentations and workshops
- 3. Social media

Dissemination of results

- 1. Website and case study portal
- 2. Presentations and workshops
- 3. Social media

Outreach of ICARUS developments

- PIARC World Road Congress Prague
- TRB transport resilience conference
- UNECE group of experts on climate change adaptation
- Decision Making under Deep Uncertainty conference
- TRA Dublin
- Civil Engineering Research of Ireland conference

Dissemination of results

- 1. Website and case study portal
- 2. Presentations and workshops
- 3. Social media

#throwback to when the ICARUS project team and experts from road authorities across Europe met in Dublin for an in person workshop and thought provoking discussions! ...more

...

- 1. Good resilience frameworks exist already!
- 2. Connect resilience and adaptation to decision context
- 3. Make sure to engage strategic, tactical and operational level
- 4. Understand and close the tactical gap
- 5. Consider nature based solutions

Looking forward to another great training!

Programme Day 1 (in-person and online)

Looking forward to another great training!

13:00	Registration & lunch
14:00	Welcome and introduction
14:15	Hybrid session - presentation of ICARUS project results with Q&A session: ICARUS - Improve the uptake of Climate change Adaptation in the decision making processes of Road aUthoritieS
15:45	Break
16:00	Demonstration and training on the ICARUS climate change adaptation implementation process (<i>in-person only</i>)
18:00	End of Day 1
19:00	Dinner (Restaurant La Tasca, Voldersgracht 13 & 14, Delft)
	R Conference Européenne des Directeurs des Routes Conference of Europeen Directors of Roads Programme Day 2 <i>(in-person only)</i>
09:00	resilience
10:15	Break
10:30	Demonstration and training on the use of the adaptation options database and evaluation approaches of adaptation options
12:30	Lunch
13:30	Demonstration and training on specific recommendations to include Nature Based Solutions in climate change adaptation solutions
14:30	Break
14:45	Demonstration and training on overcoming implementation barriers
16:00	Summary of obtained feedback, open questions, implementation issues and
	Closing remarks