

Conférence Européenne des Directeurs des Routes

Conference of European Directors of Roads

CEDR: Noise & Nuisance call 2019, final Event 08.06.2022

STEER-Project

Deepening the solutions

STEER project structure

(STrengthening the Effect of quieter tyres on European Roads)

Introduction

Where tyre/road noise dominates..

Quieter tyres potentially effective on highways and in cities (>30 km/h)

We are not alone

Japan	South Corea	China	Indian	Brasil
mandatory	mandatory	optional	(proposal)	mandatory
C1 only	C1 only			C1 only
No noise label	No noise label		No noise label	

R Conférence Européenne des Directeurs des Routes Evolution of the European tyre label

Conference of European Directors of Roads

Noise label and label classes

You voted yesterday

What is the most important purchase criterion for you when buying your recent tyre?

Mentimeter

Current status – importance of aspect

Importance of aspect (purchase criterion):

- "Price" high up
- "Rolling Noise" further down

Source of data: Final Report--Review study on the Regulation (EC) No 1222 / 2009 on the labelling of tyres. Prepared by Viegand Maagøe A / S 1–152, Copenhagen, Denmark. (URL:

https://ec.europa.eu/energy/sites/ener/files/documents/Study%20in%20support%20of%20the%20Review%20of%20the %20Tyre%20Labelling%20Regulation_final.pdf.), graphic by the authors.

Review of current label

Overview of noise testing procedures for vehicles

Conference of European

Tyre noise labelling procedure

Uncertainty of the current procedure

Implication of uncertainty of noise label

Scatter to expect for empirical

Scatter plots determined in the Nord Tyre Project

Low correlation coefficients are to be expected!

Reproducibility of the tyre label

Uncertainty of current procedure

• Overall uncertainty compared with other measurement principles

	SPB	Noise label (R117)	СРХ	Drum
standard uncertainty	1.1 dB (cat. P) 1.6 dB (cat. H)	1.41-1.95 dB (C1) 1.51-2.02 dB (C2)	0.3 dB (tyre P1) 0.5 dB (tyre H1)	0.1 dB

Level of standardization

 \rightarrow Uncertainty of current labelling procedure too high

Important uncertainty contributions

Variability of ISO test track

- Problem: acoustic quality of ISO-Test tracks varies significantly (despite the construction requirements)
- RRT by M+P in 2005, in Europe: 7+2 test tracks
- RRT by JSAE in 2006, in Japan: 8 test tracks
- RRT by VDA in 2016, in Europe: 13 test tracks
- RRT by ETRTO (2018), in Europe: 4 test tracks
- RRT within project ELANORE (2021), in Europe: 3 test trac

Data: JSAE, 2006. Test Results of Round Robin Test in Japan, (Unpublished), Presentation by Japan Society of Automotive Engineers (JSAE), 18-20 October 2006 (Document N144 in ISO/TC 43/SC 1/WG 42), Graphics by the autors.

 \rightarrow Site to site variation of up to 6 dB

Solution: Reference tyre calibration procedure

- 1. Using a set of reference tyres of the SRTT 16" type, specified in ISO/TS 11819-3,
- 2. mounted on a relatively well-defined vehicle,
- 3. conducting tyre/road noise measurements according to the method in R117,
- 4. normalizing the resulting noise level to a reference temperature using ISO/TS 13471-1,
- 5. and then normalizing the final result to some defined ISO 10844 reference level.

Recertification needed: Repetition after 2 years (presently after 4 years)

Directors of Roads

Solution: Reference tyre calibration procedure

\rightarrow Uncertainty contribution can be halved!

Testing entire tyre lines

What is a so called **«tyre line»?**

 tyres that share the same trade description or product name but may have different dimensions, load index or speed rating

Why is it important?

• The labelling regulation does not require that all variants of tyres are tested. Often, **only the noisiest tyres are tested to save money** and give the other tyres the same label. Or often only a few tyre variants are tested.

Testing entire tyre lines

Measured noise level [dB]

Solution: Implement indoor testing on laboratory drum

Indoor procedure:

- simplified measuring method
- determine differences between tyre variants within a tyre line
- use this difference to assign noise labels to all (or at least most) tyre variants with the type approval level as a reference.

Solution: Implement indoor testing on laboratory drum

 \rightarrow Uncertainty contribution can be reduced by two thirds!

Uncertainty related to test vehicle

- The vehicles used for testing according R117 are not very strictly defined.
- → High uncertainty contribution due to choice of vehicle/state of the vehicle
- Problem difficult to solve, as tyres need to be mounted to appropr. vehicle

Impact on uncertainty:

- Shielding effects (e.g. due to chassis height)
- Reflections
 (e.g. due to wheel chamber)
- Source positions
 (e.g. due to axis distance)

Solution: Stricter requirements for test vehicles

- → Recommendation to reduce the wheelbase to be more restrictive (marginal improvement for C1 tyres, but significant for C2 tyres).
- → Better description of car underbody in relation to the ground clearance would be worthwile.

Directors of Roads

Solution: Implement stricter requirement for test vehicle

 \rightarrow Uncertainty contribution from vehicle only slightly reduced!

 \rightarrow May only be solved in the long-run (see longterm vision of tyre noise lable)

Temperature correction

• Temperature is a major source of uncertainty.

→ Challenge to find globally applicable correction procedure

- Which temperature to use for correction?
 - Tyre
 - Ambient (Air)
 - Surface (Road)

 Current correction procedure seems to favor correction at high temperatures.

Recommendation:

- Update coefficients (lowhanging fruits)
- Suggestion (long-term):
- Spectral influence of the temperature correction is to be determined.
- Correction based on T_{air} and T_{road} combined

Solution: Implement indoor testing on laboratory drum

→ Uncertainty contribution can be reduced by a third!
 → constitutes a «low-hanging fruit», as it is easy to improve

Solution: Improvement of overall uncertainty

Overall uncertainty can be halved by implementation of STEER recommendations

Representativity of the tyre label

Representativity of the tyre noise label regarding real-world conditions

Description of the ISO Test surface

Parameter	ISO 10844:1994	ISO 10844:2014
Maximum chipping size	8 mm with allowable limits [6.3-10 mm]	8 mm with allowable limits [6.3-10 mm]
Maximum void content	Average of cores \leq 8 %; no core > 10 %	-
Macrotexture (MTD or MPD)	MTD ≥ 0.4 mm	MPD = 0.5 mm ± 0.2 mm
Absorption coefficient α	α < 10 % for average of maximum reached in the area 400 – 800 Hz and in the area 800 – 1600 Hz	α < 8 % for any third octave band between 315 and 1600 Hz for driving lane; α < 10 % for propagation area

Representativity of tyre label

Roughness of Real-World surfaces (selection)

Sweden: Road cat. SU 25 Rough Texture Smooth Texture Medium Texture 20 Occurence [%] 15 — MPD Hagelberg 10 5 n: 18874 0 0.5 - 0.6 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0 1.1 - 1.2 1.2 - 1.3 1.4 - 1.5 1.5 - 1.6 1.7 - 1.8 1.9 - 2.0 0.0 - 0.1 0.1 - 0.2 0.2 - 0.3 0.3 - 0.4 0.6 - 0.7 1.0 - 1.1 1.3 - 1.4 1.6 - 1.7 1.8 - 1.9 0.4 - 0.5 MPD [mm]

- Quieter tyres can unfold their potential on large parts of the European road network.
- Consider choosing "smooth" to "medium" textured road surfaces as a standard road surface on the road net-work in order to benefit from quieter tyres and its future potential. Also, with benefits for rolling resistance.
- Avoid "rough" surfaces (asphalts or surface dressings with aggegate sizes >= 14 mm) where residence live
- Smooth surfaces are best in combination with low noise tyres

Increasing the market share of quieter tyres

What tyres are on the market?

- Target conflicts between multiple categories? → Analysis of swiss database of tyres.
- Majority tyres are labelled close to the Limit Value (red boxes)
- Share of top performing (green colors) tyres is increasing with lower noise label values.

Scenarios for proliferation of quieter tyres

Scenario Name	Short description	
Reference (Status quo)	Defined in 2009/661/EC, status quo, business as usual	
Scenario 1, Baseline ECE Proposal	ECE Proposal 2022	
Scenario 2, Industry agreement	Output-oriented noise levels average for tyres	
Scenario 3, Subsidies for tyre	Subsidies for tyre manufacturers to produce tyres with LV-3	
manufacturers	(LV = noise limit value)	
Scenario 4, Consumer incentives	Potential incentives to consumers buying class A tyre (LV-3 tyre)	

Effect of scenarios

- High reduction potential for all scenarios (effects of up to 3 dB) are possible
- For some countries, ca. 10% of the population can be protected from harmful noise

Current market trends

Conference of European Directors of Roads

EV: Strong increase (Ban of CO_2 emitting cars by 2035)

Tendency to heavier vehicles (SUV:s)

Data: Grunder, S., Touring Club Switzerlan (TCS) in German, 2017, Entwicklung der PKW-Lärm-Emissionen bei der Zulassung Analyse der Stand- und Vorbeifahrtmessung der Jahre 2005 bis 2015, https://www.bafu.admin.ch/dam/bafu/de/dokumente/laerm/externe-studien-berichte/entwicklung-der-pkw-laerm-emissionen-bei-der-zulassung.pdf.download.pdf/La%CC%88rmstudie TCS SMNA 2016 20170718.pdf

Data: Grunder, S., Touring Club Switzerland (TCS), 2017, Entwicklung der PKW-Lärm-Emissionen bei der Zulassung Analyse der Stand- und Vorbeifahrtmessung der Jahre 2005 bis 2015

Act as early as possible (increasing electro mobility trend) *Industry agreement* and *consumer incentives* are effective measures

Raise awareness for the noise problem in the population

Consider support of consumer organisations to promote quieter tyres

Investigate and test measures for a possible implementation of *consumer incentives* to buy AAA-Tyres

Implement use of RFID systems to detect and encourage the use of low noise tyres in traffic

Impediments for tyre-manufacturers, or how to construct a low noise tyre.

- Optimization of one tyre performance parameter has always an impact on other parameters.
- Target conflicts between safety (wet grip) and noise according to ETRTO (European Tyre and Rim Technical Organisation) and ACEA (European automobile manufacturers association)

Impediments: Conclusions

- Tyre prototypes: 3 prototypes have been constructed within this project. However, trade-offs between noise and wet grip have been found. Compromises needed, without sacrificing too much of other parameters. → Typical in product development.
- However, empirical market data analysis has shown, that AAA-Tyres are already on the market.
- Tyre wear: Future label parameter? \rightarrow Sustainability

Conclusions

Conclusions: Regarding the European tyre label

- European tyre label is important information tool for consumers
- Noise is currently not a decisive purchase criterion for consumers
- standard uncertainty of between 1.4 and 2.0 dB
 → labelling procedure in its current form is far from optimal.
- Measurement uncertainty can be halved if the improvements proposed by STEER are implemented now (see recommendations).

Recommendations: Regarding the European tyre label

Urgent need for improvements of the current labelling procedure

- Implement a Reference Tyre Calibration Procedure
- Implement a procedure for testing entire tyre lines on labaratory drum
- Implement stricter requirements for test vehicles (ground clearance and wheelbase)
- Improve temperature correction procedure
- Add three legal noise classes to label. (As before 2021)

EU Commission (make additional requirements in 2020/740/EC)

Conclusions: Regarding the impact of quieter tyres on European roads

- Efficiency for traffic noise reduction on European roads: the potential of quieter tyres can be almost fully achieved on large parts of the European road network.
- Reduced effectiveness only on roads with rough-textured surface: (max. chipping size ≥ 14 mm, some cement concrete surfaces),
- The combination of low noise tyres and low noise pavements is the best solution.

Recommendations: Regarding the impact of quieter tyres on European roads

NRA:

- Choose the optimal standard pavement of the road network
 - Consider choosing smooth to medium textured road surfaces (chipping size < 14 mm)
 - Avoid «rough-textured» road surfaces.
 → High noise exposure

Conclusions: What to expect from quieter tyres in the future?

- Quiet tyres could make traffic on European roads up to 3 dB quieter in the future, but only if their market share can be increased with suitable measures.
- If no further measures are taken at this stage to increase the market share of quiet tyres, their potential can hardly be further exploited.
- In many European countries, considerable financial benefits can be expected from the avoidance of external costs. (example NL: annual benefit of about 25 million Euros)

Recommendations: Raise awareness and inform consumers

Raise awareness and inform the consumer about benefits

- Raise awareness through information campaigns: Labelling should be used as information tool to support consumers
- Raise awareness of the noise problem among the general public: Encourage consumer to opt for quieter products
- When procuring road vehicles, consider requiring lownoise tyres
- Use RFID systems to track vehicles with certain tyres.

<u>NRA:s</u>, environmental authorities, procurement authorities, national and local governments

Recommendations: Increasing the market share of quieter tyres

Implementation of measures

- Further investigate, specify and test the different scenarios
 - Industry agreement / Consumer incentives
- Combine scenarios with additional incentives
- Benefits will likely offset the costs
- Act now to benefit from market trends \rightarrow EV:s
- Act now to avoid jeopardising the benefits of new
- EU regulation

EU Commission, <u>NRA:s</u>, National, regional and local governments

Planned dissemination

COMMUNICATION

- InterNoise22: Project STEER: Improving the EU Tyre Noise Label, (Schlatter)
- InterNoise22: The EU Tyre Noise Label: The problem with measuring the noise level of only a few of all tyre variants, (Sandberg)

• ICSV 2022: Project STEER: The effect of uncertainties in determining the EU Tyre Noise Label, (Goubert)

Planned targeted communications

- Recommendations for improved tyre labelling system
- Recommendations for improved representativity for countries with coarse road surfaces

Evaluation of different measures enhancing market [™] share of quiet tyres on European roads.

groups

Others

Discussion